Skip to content
Snippets Groups Projects
user avatar
Josh Rosen authored
This pull request is a first step towards the implementation of a stable, pull-based progress / status API for Spark (see [SPARK-2321](https://issues.apache.org/jira/browse/SPARK-2321)).  For now, I'd like to discuss the basic implementation, API names, and overall interface design.  Once we arrive at a good design, I'll go back and add additional methods to expose more information via these API.

#### Design goals:

- Pull-based API
- Usable from Java / Scala / Python (eventually, likely with a wrapper)
- Can be extended to expose more information without introducing binary incompatibilities.
- Returns immutable objects.
- Don't leak any implementation details, preserving our freedom to change the implementation.

#### Implementation:

- Add public methods (`getJobInfo`, `getStageInfo`) to SparkContext to allow status / progress information to be retrieved.
- Add public interfaces (`SparkJobInfo`, `SparkStageInfo`) for our API return values.  These interfaces consist entirely of Java-style getter methods.  The interfaces are currently implemented in Java.  I decided to explicitly separate the interface from its implementation (`SparkJobInfoImpl`, `SparkStageInfoImpl`) in order to prevent users from constructing these responses themselves.
-Allow an existing JobProgressListener to be used when constructing a live SparkUI.  This allows us to re-use this listeners in the implementation of this status API.  There are a few reasons why this listener re-use makes sense:
   - The status API and web UI are guaranteed to show consistent information.
   - These listeners are already well-tested.
   - The same garbage-collection / information retention configurations can apply to both this API and the web UI.
- Extend JobProgressListener to maintain `jobId -> Job` and `stageId -> Stage` mappings.

The progress API methods are implemented in a separate trait that's mixed into SparkContext.  This helps to avoid SparkContext.scala from becoming larger and more difficult to read.

Author: Josh Rosen <joshrosen@databricks.com>
Author: Josh Rosen <joshrosen@apache.org>

Closes #2696 from JoshRosen/progress-reporting-api and squashes the following commits:

e6aa78d [Josh Rosen] Add tests.
b585c16 [Josh Rosen] Accept SparkListenerBus instead of more specific subclasses.
c96402d [Josh Rosen] Address review comments.
2707f98 [Josh Rosen] Expose current stage attempt id
c28ba76 [Josh Rosen] Update demo code:
646ff1d [Josh Rosen] Document spark.ui.retainedJobs.
7f47d6d [Josh Rosen] Clean up SparkUI constructors, per Andrew's feedback.
b77b3d8 [Josh Rosen] Merge remote-tracking branch 'origin/master' into progress-reporting-api
787444c [Josh Rosen] Move status API methods into trait that can be mixed into SparkContext.
f9a9a00 [Josh Rosen] More review comments:
3dc79af [Josh Rosen] Remove creation of unused listeners in SparkContext.
249ca16 [Josh Rosen] Address several review comments:
da5648e [Josh Rosen] Add example of basic progress reporting in Java.
7319ffd [Josh Rosen] Add getJobIdsForGroup() and num*Tasks() methods.
cc568e5 [Josh Rosen] Add note explaining that interfaces should not be implemented outside of Spark.
6e840d4 [Josh Rosen] Remove getter-style names and "consistent snapshot" semantics:
08cbec9 [Josh Rosen] Begin to sketch the interfaces for a stable, public status API.
ac2d13a [Josh Rosen] Add jobId->stage, stageId->stage mappings in JobProgressListener
24de263 [Josh Rosen] Create UI listeners in SparkContext instead of in Tabs:
95303168
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at "Building Spark with Maven".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run all automated tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions. See also "Third Party Hadoop Distributions" for guidance on building a Spark application that works with a particular distribution.

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.