Skip to content
Snippets Groups Projects
user avatar
Xiangrui Meng authored
Having some basic BLAS operations implemented in MLlib can help simplify the current implementation and improve some performance.

Tested on my local machine:

~~~
bin/spark-submit --class org.apache.spark.examples.mllib.BinaryClassification \
examples/target/scala-*/spark-examples-*.jar --algorithm LR --regType L2 \
--regParam 1.0 --numIterations 1000 ~/share/data/rcv1.binary/rcv1_train.binary
~~~

1. before: ~1m
2. after: ~30s

CC: jkbradley

Author: Xiangrui Meng <meng@databricks.com>

Closes #1849 from mengxr/ml-blas and squashes the following commits:

ba583a2 [Xiangrui Meng] exclude Vector.copy
a4d7d2f [Xiangrui Meng] Merge branch 'master' into ml-blas
6edeab9 [Xiangrui Meng] address comments
940bdeb [Xiangrui Meng] rename MLlibBLAS to BLAS
c2a38bc [Xiangrui Meng] enhance dot tests
4cfaac4 [Xiangrui Meng] add apache header
48d01d2 [Xiangrui Meng] add tests for zeros and copy
3b882b1 [Xiangrui Meng] use blas.scal in gradient
735eb23 [Xiangrui Meng] remove d from BLAS routines
d2d7d3c [Xiangrui Meng] update gradient and lbfgs
7f78186 [Xiangrui Meng] add zeros to Vectors; add dscal and dcopy to BLAS
14e6645 [Xiangrui Meng] add ddot
cbb8273 [Xiangrui Meng] add daxpy test
07db0bb [Xiangrui Meng] Merge branch 'master' into ml-blas
e8c326d [Xiangrui Meng] axpy
9038d94e
History