Skip to content
Snippets Groups Projects
user avatar
Matei Zaharia authored
JIRA: https://issues.apache.org/jira/browse/SPARK-2657

Our current code uses ArrayBuffers for each group of values in groupBy, as well as for the key's elements in CoGroupedRDD. ArrayBuffers have a lot of overhead if there are few values in them, which is likely to happen in cases such as join. In particular, they have a pointer to an Object[] of size 16 by default, which is 24 bytes for the array header + 128 for the pointers in there, plus at least 32 for the ArrayBuffer data structure. This patch replaces the per-group buffers with a CompactBuffer class that can store up to 2 elements more efficiently (in fields of itself) and acts like an ArrayBuffer beyond that. For a key's elements in CoGroupedRDD, we use an Array of CompactBuffers instead of an ArrayBuffer of ArrayBuffers.

There are some changes throughout the code to deal with CoGroupedRDD returning Array instead. We can also decide not to do that but CoGroupedRDD is a `DeveloperAPI` so I think it's okay to change it here.

Author: Matei Zaharia <matei@databricks.com>

Closes #1555 from mateiz/compact-groupby and squashes the following commits:

845a356 [Matei Zaharia] Lower initial size of CompactBuffer's vector to 8
07621a7 [Matei Zaharia] Review comments
0c1cd12 [Matei Zaharia] Don't use varargs in CompactBuffer.apply
bdc8a39 [Matei Zaharia] Small tweak to +=, and typos
f61f040 [Matei Zaharia] Fix line lengths
59da88b0 [Matei Zaharia] Fix line lengths
197cde8 [Matei Zaharia] Make CompactBuffer extend Seq to make its toSeq more efficient
775110f [Matei Zaharia] Change CoGroupedRDD to give (K, Array[Iterable[_]]) to avoid wrappers
9b4c6e8 [Matei Zaharia] Use CompactBuffer in CoGroupedRDD
ed577ab [Matei Zaharia] Use CompactBuffer in groupByKey
10f0de1 [Matei Zaharia] A CompactBuffer that's more memory-efficient than ArrayBuffer for small buffers
8529ced3
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLLib for machine learning, GraphX for graph processing, and Spark Streaming.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project webpage at http://spark.apache.org/documentation.html. This README file only contains basic setup instructions.

Building Spark

Spark is built on Scala 2.10. To build Spark and its example programs, run:

./sbt/sbt assembly

(You do not need to do this if you downloaded a pre-built package.)

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./sbt/sbt test

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs. You can change the version by setting -Dhadoop.version when building Spark.

For Apache Hadoop versions 1.x, Cloudera CDH MRv1, and other Hadoop versions without YARN, use:

# Apache Hadoop 1.2.1
$ sbt/sbt -Dhadoop.version=1.2.1 assembly

# Cloudera CDH 4.2.0 with MapReduce v1
$ sbt/sbt -Dhadoop.version=2.0.0-mr1-cdh4.2.0 assembly

For Apache Hadoop 2.2.X, 2.1.X, 2.0.X, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions with YARN, also set -Pyarn:

# Apache Hadoop 2.0.5-alpha
$ sbt/sbt -Dhadoop.version=2.0.5-alpha -Pyarn assembly

# Cloudera CDH 4.2.0 with MapReduce v2
$ sbt/sbt -Dhadoop.version=2.0.0-cdh4.2.0 -Pyarn assembly

# Apache Hadoop 2.2.X and newer
$ sbt/sbt -Dhadoop.version=2.2.0 -Pyarn assembly

When developing a Spark application, specify the Hadoop version by adding the "hadoop-client" artifact to your project's dependencies. For example, if you're using Hadoop 1.2.1 and build your application using SBT, add this entry to libraryDependencies:

"org.apache.hadoop" % "hadoop-client" % "1.2.1"

If your project is built with Maven, add this to your POM file's <dependencies> section:

<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-client</artifactId>
  <version>1.2.1</version>
</dependency>

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.

Contributing to Spark

Contributions via GitHub pull requests are gladly accepted from their original author. Along with any pull requests, please state that the contribution is your original work and that you license the work to the project under the project's open source license. Whether or not you state this explicitly, by submitting any copyrighted material via pull request, email, or other means you agree to license the material under the project's open source license and warrant that you have the legal authority to do so.