Skip to content
Snippets Groups Projects
user avatar
Reynold Xin authored
## What changes were proposed in this pull request?
I'm spending more time at the design & code level for cost-based optimizer now, and have found a number of issues related to maintainability and compatibility that I will like to address.

This is a small pull request to clean up AnalyzeColumnCommand:

1. Removed warning on duplicated columns. Warnings in log messages are useless since most users that run SQL don't see them.
2. Removed the nested updateStats function, by just inlining the function.
3. Renamed a few functions to better reflect what they do.
4. Removed the factory apply method for ColumnStatStruct. It is a bad pattern to use a apply method that returns an instantiation of a class that is not of the same type (ColumnStatStruct.apply used to return CreateNamedStruct).
5. Renamed ColumnStatStruct to just AnalyzeColumnCommand.
6. Added more documentation explaining some of the non-obvious return types and code blocks.

In follow-up pull requests, I'd like to address the following:

1. Get rid of the Map[String, ColumnStat] map, since internally we should be using Attribute to reference columns, rather than strings.
2. Decouple the fields exposed by ColumnStat and internals of Spark SQL's execution path. Currently the two are coupled because ColumnStat takes in an InternalRow.
3. Correctness: Remove code path that stores statistics in the catalog using the base64 encoding of the UnsafeRow format, which is not stable across Spark versions.
4. Clearly document the data representation stored in the catalog for statistics.

## How was this patch tested?
Affected test cases have been updated.

Author: Reynold Xin <rxin@databricks.com>

Closes #15933 from rxin/SPARK-18505.
6f7ff750
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark". For developing Spark using an IDE, see Eclipse and IntelliJ.

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.

## Contributing

Please review the Contribution to Spark wiki for information on how to get started contributing to the project.