Skip to content
Snippets Groups Projects
user avatar
Scott Taylor authored
This will allow problems with piped commands to be detected.
This will also allow tasks to be retried where errors are rare (such as network problems in piped commands).

Author: Scott Taylor <github@megatron.me.uk>

Closes #6262 from megatron-me-uk/patch-2 and squashes the following commits:

04ae1d5 [Scott Taylor] Remove spurious empty line
98fa101 [Scott Taylor] fix blank line style error
574b564 [Scott Taylor] Merge pull request #2 from megatron-me-uk/patch-4
0c1e762 [Scott Taylor] Update rdd pipe method for checkCode
ab9a2e1 [Scott Taylor] Update rdd pipe tests for checkCode
eb4801c [Scott Taylor] fix fail_condition
b0ac3a4 [Scott Taylor] Merge pull request #1 from megatron-me-uk/megatron-me-uk-patch-1
a307d13 [Scott Taylor] update rdd tests to test pipe modes
34fcdc3 [Scott Taylor] add optional argument 'mode' for rdd.pipe
a0c0161 [Scott Taylor] fix generator issue
8a9ef9c [Scott Taylor] make check_return_code an iterator
0486ae3 [Scott Taylor] style fixes
8ed89a6 [Scott Taylor] Chain generators to prevent potential deadlock
4153b02 [Scott Taylor] fix list.sort returns None
491d3fc [Scott Taylor] Pass a function handle to assertRaises
3344a21 [Scott Taylor] wrap assertRaises with QuietTest
3ab8c7a [Scott Taylor] remove whitespace for style
cc1a73d [Scott Taylor] fix style issues in pipe test
8db4073 [Scott Taylor] Add a test for rdd pipe functions
1b3dc4e [Scott Taylor] fix missing space around operator style
0974f98 [Scott Taylor] add space between words in multiline string
45f4977 [Scott Taylor] fix line too long style error
5745d85 [Scott Taylor] Remove space to fix style
f552d49 [Scott Taylor] Catch non-zero exit from pipe commands
6e1c7e27
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at "Building Spark".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions. See also "Third Party Hadoop Distributions" for guidance on building a Spark application that works with a particular distribution.

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.