Skip to content
Snippets Groups Projects
user avatar
Josh Rosen authored
This patch replaces a single `awaitUninterruptibly()` call with a plain `await()` call in Spark's `network-common` library in order to fix a bug which may cause tasks to be uncancellable.

In Spark's Netty RPC layer, `TransportClientFactory.createClient()` calls `awaitUninterruptibly()` on a Netty future while waiting for a connection to be established. This creates problem when a Spark task is interrupted while blocking in this call (which can happen in the event of a slow connection which will eventually time out). This has bad impacts on task cancellation when `interruptOnCancel = true`.

As an example of the impact of this problem, I experienced significant numbers of uncancellable "zombie tasks" on a production cluster where several tasks were blocked trying to connect to a dead shuffle server and then continued running as zombies after I cancelled the associated Spark stage. The zombie tasks ran for several minutes with the following stack:

```
java.lang.Object.wait(Native Method)
java.lang.Object.wait(Object.java:460)
io.netty.util.concurrent.DefaultPromise.await0(DefaultPromise.java:607)
io.netty.util.concurrent.DefaultPromise.awaitUninterruptibly(DefaultPromise.java:301)
org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:224)
org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:179) => holding Monitor(java.lang.Object1849476028})
org.apache.spark.network.shuffle.ExternalShuffleClient$1.createAndStart(ExternalShuffleClient.java:105)
org.apache.spark.network.shuffle.RetryingBlockFetcher.fetchAllOutstanding(RetryingBlockFetcher.java:140)
org.apache.spark.network.shuffle.RetryingBlockFetcher.start(RetryingBlockFetcher.java:120)
org.apache.spark.network.shuffle.ExternalShuffleClient.fetchBlocks(ExternalShuffleClient.java:114)
org.apache.spark.storage.ShuffleBlockFetcherIterator.sendRequest(ShuffleBlockFetcherIterator.scala:169)
org.apache.spark.storage.ShuffleBlockFetcherIterator.fetchUpToMaxBytes(ShuffleBlockFetcherIterator.scala:
350)
org.apache.spark.storage.ShuffleBlockFetcherIterator.initialize(ShuffleBlockFetcherIterator.scala:286)
org.apache.spark.storage.ShuffleBlockFetcherIterator.<init>(ShuffleBlockFetcherIterator.scala:120)
org.apache.spark.shuffle.BlockStoreShuffleReader.read(BlockStoreShuffleReader.scala:45)
org.apache.spark.sql.execution.ShuffledRowRDD.compute(ShuffledRowRDD.scala:169)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
[...]
```

As far as I can tell, `awaitUninterruptibly()` might have been used in order to avoid having to declare that methods throw `InterruptedException` (this code is written in Java, hence the need to use checked exceptions). This patch simply replaces this with a regular, interruptible `await()` call,.

This required several interface changes to declare a new checked exception (these are internal interfaces, though, and this change doesn't significantly impact binary compatibility).

An alternative approach would be to wrap `InterruptedException` into `IOException` in order to avoid having to change interfaces. The problem with this approach is that the `network-shuffle` project's `RetryingBlockFetcher` code treats `IOExceptions` as transitive failures when deciding whether to retry fetches, so throwing a wrapped `IOException` might cause an interrupted shuffle fetch to be retried, further prolonging the lifetime of a cancelled zombie task.

Note that there are three other `awaitUninterruptibly()` in the codebase, but those calls have a hard 10 second timeout and are waiting on a `close()` operation which is expected to complete near instantaneously, so the impact of uninterruptibility there is much smaller.

Manually.

Author: Josh Rosen <joshrosen@databricks.com>

Closes #16866 from JoshRosen/SPARK-19529.

(cherry picked from commit 1c4d10b1)
Signed-off-by: default avatarCheng Lian <lian@databricks.com>
5db23473
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark".

For general development tips, including info on developing Spark using an IDE, see http://spark.apache.org/developer-tools.html.

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.

## Contributing

Please review the Contribution to Spark guide for information on how to get started contributing to the project.