Skip to content
Snippets Groups Projects
user avatar
Herman van Hovell authored
## What changes were proposed in this pull request?
`AggregateFunction` currently implements `ImplicitCastInputTypes` (which enables implicit input type casting). There are actually quite a few situations in which we don't need this, or require more control over our input. A recent example is the aggregate for `CountMinSketch` which should only take string, binary or integral types inputs.

This PR removes `ImplicitCastInputTypes` from the `AggregateFunction` and makes a case-by-case decision on what kind of input validation we should use.

## How was this patch tested?
Refactoring only. Existing tests.

Author: Herman van Hovell <hvanhovell@databricks.com>

Closes #16066 from hvanhovell/SPARK-18632.
af9789a4
History
Name Last commit Last update
..
catalyst
core
hive-thriftserver
hive
README.md

Spark SQL

This module provides support for executing relational queries expressed in either SQL or the DataFrame/Dataset API.

Spark SQL is broken up into four subprojects:

  • Catalyst (sql/catalyst) - An implementation-agnostic framework for manipulating trees of relational operators and expressions.
  • Execution (sql/core) - A query planner / execution engine for translating Catalyst's logical query plans into Spark RDDs. This component also includes a new public interface, SQLContext, that allows users to execute SQL or LINQ statements against existing RDDs and Parquet files.
  • Hive Support (sql/hive) - Includes an extension of SQLContext called HiveContext that allows users to write queries using a subset of HiveQL and access data from a Hive Metastore using Hive SerDes. There are also wrappers that allows users to run queries that include Hive UDFs, UDAFs, and UDTFs.
  • HiveServer and CLI support (sql/hive-thriftserver) - Includes support for the SQL CLI (bin/spark-sql) and a HiveServer2 (for JDBC/ODBC) compatible server.