Skip to content
Snippets Groups Projects
user avatar
Davies Liu authored
RDD.histogram(buckets)

        Compute a histogram using the provided buckets. The buckets
        are all open to the right except for the last which is closed.
        e.g. [1,10,20,50] means the buckets are [1,10) [10,20) [20,50],
        which means 1<=x<10, 10<=x<20, 20<=x<=50. And on the input of 1
        and 50 we would have a histogram of 1,0,1.

        If your histogram is evenly spaced (e.g. [0, 10, 20, 30]),
        this can be switched from an O(log n) inseration to O(1) per
        element(where n = # buckets).

        Buckets must be sorted and not contain any duplicates, must be
        at least two elements.

        If `buckets` is a number, it will generates buckets which is
        evenly spaced between the minimum and maximum of the RDD. For
        example, if the min value is 0 and the max is 100, given buckets
        as 2, the resulting buckets will be [0,50) [50,100]. buckets must
        be at least 1 If the RDD contains infinity, NaN throws an exception
        If the elements in RDD do not vary (max == min) always returns
        a single bucket.

        It will return an tuple of buckets and histogram.

        >>> rdd = sc.parallelize(range(51))
        >>> rdd.histogram(2)
        ([0, 25, 50], [25, 26])
        >>> rdd.histogram([0, 5, 25, 50])
        ([0, 5, 25, 50], [5, 20, 26])
        >>> rdd.histogram([0, 15, 30, 45, 60], True)
        ([0, 15, 30, 45, 60], [15, 15, 15, 6])
        >>> rdd = sc.parallelize(["ab", "ac", "b", "bd", "ef"])
        >>> rdd.histogram(("a", "b", "c"))
        (('a', 'b', 'c'), [2, 2])

closes #122, it's duplicated.

Author: Davies Liu <davies.liu@gmail.com>

Closes #2091 from davies/histgram and squashes the following commits:

a322f8a [Davies Liu] fix deprecation of e.message
84e85fa [Davies Liu] remove evenBuckets, add more tests (including str)
d9a0722 [Davies Liu] address comments
0e18a2d [Davies Liu] add histgram() API
3cedc4f4
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLLib for machine learning, GraphX for graph processing, and Spark Streaming.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project webpage at http://spark.apache.org/documentation.html. This README file only contains basic setup instructions.

Building Spark

Spark is built on Scala 2.10. To build Spark and its example programs, run:

./sbt/sbt assembly

(You do not need to do this if you downloaded a pre-built package.)

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./sbt/sbt test

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs. You can change the version by setting -Dhadoop.version when building Spark.

For Apache Hadoop versions 1.x, Cloudera CDH MRv1, and other Hadoop versions without YARN, use:

# Apache Hadoop 1.2.1
$ sbt/sbt -Dhadoop.version=1.2.1 assembly

# Cloudera CDH 4.2.0 with MapReduce v1
$ sbt/sbt -Dhadoop.version=2.0.0-mr1-cdh4.2.0 assembly

For Apache Hadoop 2.2.X, 2.1.X, 2.0.X, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions with YARN, also set -Pyarn:

# Apache Hadoop 2.0.5-alpha
$ sbt/sbt -Dhadoop.version=2.0.5-alpha -Pyarn assembly

# Cloudera CDH 4.2.0 with MapReduce v2
$ sbt/sbt -Dhadoop.version=2.0.0-cdh4.2.0 -Pyarn assembly

# Apache Hadoop 2.2.X and newer
$ sbt/sbt -Dhadoop.version=2.2.0 -Pyarn assembly

When developing a Spark application, specify the Hadoop version by adding the "hadoop-client" artifact to your project's dependencies. For example, if you're using Hadoop 1.2.1 and build your application using SBT, add this entry to libraryDependencies:

"org.apache.hadoop" % "hadoop-client" % "1.2.1"

If your project is built with Maven, add this to your POM file's <dependencies> section:

<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-client</artifactId>
  <version>1.2.1</version>
</dependency>

A Note About Thrift JDBC server and CLI for Spark SQL

Spark SQL supports Thrift JDBC server and CLI. See sql-programming-guide.md for more information about using the JDBC server and CLI. You can use those features by setting -Phive when building Spark as follows.

$ sbt/sbt -Phive  assembly

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.

Contributing to Spark

Contributions via GitHub pull requests are gladly accepted from their original author. Along with any pull requests, please state that the contribution is your original work and that you license the work to the project under the project's open source license. Whether or not you state this explicitly, by submitting any copyrighted material via pull request, email, or other means you agree to license the material under the project's open source license and warrant that you have the legal authority to do so.

Please see Contributing to Spark wiki page for more information.