Skip to content
Snippets Groups Projects
user avatar
hyukjinkwon authored
[SPARK-19019] [PYTHON] Fix hijacked `collections.namedtuple` and port cloudpickle changes for PySpark to work with Python 3.6.0

## What changes were proposed in this pull request?

Currently, PySpark does not work with Python 3.6.0.

Running `./bin/pyspark` simply throws the error as below and PySpark does not work at all:

```
Traceback (most recent call last):
  File ".../spark/python/pyspark/shell.py", line 30, in <module>
    import pyspark
  File ".../spark/python/pyspark/__init__.py", line 46, in <module>
    from pyspark.context import SparkContext
  File ".../spark/python/pyspark/context.py", line 36, in <module>
    from pyspark.java_gateway import launch_gateway
  File ".../spark/python/pyspark/java_gateway.py", line 31, in <module>
    from py4j.java_gateway import java_import, JavaGateway, GatewayClient
  File "<frozen importlib._bootstrap>", line 961, in _find_and_load
  File "<frozen importlib._bootstrap>", line 950, in _find_and_load_unlocked
  File "<frozen importlib._bootstrap>", line 646, in _load_unlocked
  File "<frozen importlib._bootstrap>", line 616, in _load_backward_compatible
  File ".../spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py", line 18, in <module>
  File "/usr/local/Cellar/python3/3.6.0/Frameworks/Python.framework/Versions/3.6/lib/python3.6/pydoc.py", line 62, in <module>
    import pkgutil
  File "/usr/local/Cellar/python3/3.6.0/Frameworks/Python.framework/Versions/3.6/lib/python3.6/pkgutil.py", line 22, in <module>
    ModuleInfo = namedtuple('ModuleInfo', 'module_finder name ispkg')
  File ".../spark/python/pyspark/serializers.py", line 394, in namedtuple
    cls = _old_namedtuple(*args, **kwargs)
TypeError: namedtuple() missing 3 required keyword-only arguments: 'verbose', 'rename', and 'module'
```

The root cause seems because some arguments of `namedtuple` are now completely keyword-only arguments from Python 3.6.0 (See https://bugs.python.org/issue25628

).

We currently copy this function via `types.FunctionType` which does not set the default values of keyword-only arguments (meaning `namedtuple.__kwdefaults__`) and this seems causing internally missing values in the function (non-bound arguments).

This PR proposes to work around this by manually setting it via `kwargs` as `types.FunctionType` seems not supporting to set this.

Also, this PR ports the changes in cloudpickle for compatibility for Python 3.6.0.

## How was this patch tested?

Manually tested with Python 2.7.6 and Python 3.6.0.

```
./bin/pyspsark
```

, manual creation of `namedtuple` both in local and rdd with Python 3.6.0,

and Jenkins tests for other Python versions.

Also,

```
./run-tests --python-executables=python3.6
```

```
Will test against the following Python executables: ['python3.6']
Will test the following Python modules: ['pyspark-core', 'pyspark-ml', 'pyspark-mllib', 'pyspark-sql', 'pyspark-streaming']
Finished test(python3.6): pyspark.sql.tests (192s)
Finished test(python3.6): pyspark.accumulators (3s)
Finished test(python3.6): pyspark.mllib.tests (198s)
Finished test(python3.6): pyspark.broadcast (3s)
Finished test(python3.6): pyspark.conf (2s)
Finished test(python3.6): pyspark.context (14s)
Finished test(python3.6): pyspark.ml.classification (21s)
Finished test(python3.6): pyspark.ml.evaluation (11s)
Finished test(python3.6): pyspark.ml.clustering (20s)
Finished test(python3.6): pyspark.ml.linalg.__init__ (0s)
Finished test(python3.6): pyspark.streaming.tests (240s)
Finished test(python3.6): pyspark.tests (240s)
Finished test(python3.6): pyspark.ml.recommendation (19s)
Finished test(python3.6): pyspark.ml.feature (36s)
Finished test(python3.6): pyspark.ml.regression (37s)
Finished test(python3.6): pyspark.ml.tuning (28s)
Finished test(python3.6): pyspark.mllib.classification (26s)
Finished test(python3.6): pyspark.mllib.evaluation (18s)
Finished test(python3.6): pyspark.mllib.clustering (44s)
Finished test(python3.6): pyspark.mllib.linalg.__init__ (0s)
Finished test(python3.6): pyspark.mllib.feature (26s)
Finished test(python3.6): pyspark.mllib.fpm (23s)
Finished test(python3.6): pyspark.mllib.random (8s)
Finished test(python3.6): pyspark.ml.tests (92s)
Finished test(python3.6): pyspark.mllib.stat.KernelDensity (0s)
Finished test(python3.6): pyspark.mllib.linalg.distributed (25s)
Finished test(python3.6): pyspark.mllib.stat._statistics (15s)
Finished test(python3.6): pyspark.mllib.recommendation (24s)
Finished test(python3.6): pyspark.mllib.regression (26s)
Finished test(python3.6): pyspark.profiler (9s)
Finished test(python3.6): pyspark.mllib.tree (16s)
Finished test(python3.6): pyspark.shuffle (1s)
Finished test(python3.6): pyspark.mllib.util (18s)
Finished test(python3.6): pyspark.serializers (11s)
Finished test(python3.6): pyspark.rdd (20s)
Finished test(python3.6): pyspark.sql.conf (8s)
Finished test(python3.6): pyspark.sql.catalog (17s)
Finished test(python3.6): pyspark.sql.column (18s)
Finished test(python3.6): pyspark.sql.context (18s)
Finished test(python3.6): pyspark.sql.group (27s)
Finished test(python3.6): pyspark.sql.dataframe (33s)
Finished test(python3.6): pyspark.sql.functions (35s)
Finished test(python3.6): pyspark.sql.types (6s)
Finished test(python3.6): pyspark.sql.streaming (13s)
Finished test(python3.6): pyspark.streaming.util (0s)
Finished test(python3.6): pyspark.sql.session (16s)
Finished test(python3.6): pyspark.sql.window (4s)
Finished test(python3.6): pyspark.sql.readwriter (35s)
Tests passed in 433 seconds
```

Author: hyukjinkwon <gurwls223@gmail.com>

Closes #16429 from HyukjinKwon/SPARK-19019.

(cherry picked from commit 20e62806)
Signed-off-by: default avatarDavies Liu <davies.liu@gmail.com>
2ff36691
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark".

For general development tips, including info on developing Spark using an IDE, see http://spark.apache.org/developer-tools.html.

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.

## Contributing

Please review the Contribution to Spark guide for information on how to get started contributing to the project.