Skip to content
Snippets Groups Projects
user avatar
Kay Ousterhout authored
In the existing code, there are three layers of serialization
    involved in sending a task from the scheduler to an executor:
        - A Task object is serialized
        - The Task object is copied to a byte buffer that also
          contains serialized information about any additional JARs,
          files, and Properties needed for the task to execute. This
          byte buffer is stored as the member variable serializedTask
          in the TaskDescription class.
        - The TaskDescription is serialized (in addition to the serialized
          task + JARs, the TaskDescription class contains the task ID and
          other metadata) and sent in a LaunchTask message.

While it *is* necessary to have two layers of serialization, so that
the JAR, file, and Property info can be deserialized prior to
deserializing the Task object, the third layer of deserialization is
unnecessary.  This commit eliminates a layer of serialization by moving
the JARs, files, and Properties into the TaskDescription class.

This commit also serializes the Properties manually (by traversing the map),
as is done with the JARs and files, which reduces the final serialized size.

Unit tests

This is a simpler alternative to the approach proposed in #15505.

shivaram and I did some benchmarking of this and #15505 on a 20-machine m2.4xlarge EC2 machines (160 cores). We ran ~30 trials of code [1] (a very simple job with 10K tasks per stage) and measured the average time per stage:

Before this change: 2490ms
With this change: 2345 ms (so ~6% improvement over the baseline)
With witgo's approach in #15505: 2046 ms (~18% improvement over baseline)

The reason that #15505 has a more significant improvement is that it also moves the serialization from the TaskSchedulerImpl thread to the CoarseGrainedSchedulerBackend thread. I added that functionality on top of this change, and got almost the same improvement [1] as #15505 (average of 2103ms). I think we should decouple these two changes, both so we have some record of the improvement form each individual improvement, and because this change is more about simplifying the code base (the improvement is negligible) while the other is about performance improvement.  The plan, currently, is to merge this PR and then merge the remaining part of #15505 that moves serialization.

[1] The reason the improvement wasn't quite as good as with #15505 when we ran the benchmarks is almost certainly because, at the point when we ran the benchmarks, I hadn't updated the code to manually serialize the Properties (instead the code was using Java's default serialization for the Properties object, whereas #15505 manually serialized the Properties).  This PR has since been updated to manually serialize the Properties, just like the other maps.

Author: Kay Ousterhout <kayousterhout@gmail.com>

Closes #16053 from kayousterhout/SPARK-17931.
2e139eed
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark".

For general development tips, including info on developing Spark using an IDE, see "Useful Developer Tools".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.

## Contributing

Please review the Contribution to Spark guide for information on how to get started contributing to the project.