Skip to content
Snippets Groups Projects
user avatar
Takuya UESHIN authored
## What changes were proposed in this pull request?

As of Spark 2.1, Spark SQL assumes the machine timezone for datetime manipulation, which is bad if users are not in the same timezones as the machines, or if different users have different timezones.

We should introduce a session local timezone setting that is used for execution.

An explicit non-goal is locale handling.

### Semantics

Setting the session local timezone means that the timezone-aware expressions listed below should use the timezone to evaluate values, and also it should be used to convert (cast) between string and timestamp or between timestamp and date.

- `CurrentDate`
- `CurrentBatchTimestamp`
- `Hour`
- `Minute`
- `Second`
- `DateFormatClass`
- `ToUnixTimestamp`
- `UnixTimestamp`
- `FromUnixTime`

and below are implicitly timezone-aware through cast from timestamp to date:

- `DayOfYear`
- `Year`
- `Quarter`
- `Month`
- `DayOfMonth`
- `WeekOfYear`
- `LastDay`
- `NextDay`
- `TruncDate`

For example, if you have timestamp `"2016-01-01 00:00:00"` in `GMT`, the values evaluated by some of timezone-aware expressions are:

```scala
scala> val df = Seq(new java.sql.Timestamp(1451606400000L)).toDF("ts")
df: org.apache.spark.sql.DataFrame = [ts: timestamp]

scala> df.selectExpr("cast(ts as string)", "year(ts)", "month(ts)", "dayofmonth(ts)", "hour(ts)", "minute(ts)", "second(ts)").show(truncate = false)
+-------------------+----------------------+-----------------------+----------------------------+--------+----------+----------+
|ts                 |year(CAST(ts AS DATE))|month(CAST(ts AS DATE))|dayofmonth(CAST(ts AS DATE))|hour(ts)|minute(ts)|second(ts)|
+-------------------+----------------------+-----------------------+----------------------------+--------+----------+----------+
|2016-01-01 00:00:00|2016                  |1                      |1                           |0       |0         |0         |
+-------------------+----------------------+-----------------------+----------------------------+--------+----------+----------+
```

whereas setting the session local timezone to `"PST"`, they are:

```scala
scala> spark.conf.set("spark.sql.session.timeZone", "PST")

scala> df.selectExpr("cast(ts as string)", "year(ts)", "month(ts)", "dayofmonth(ts)", "hour(ts)", "minute(ts)", "second(ts)").show(truncate = false)
+-------------------+----------------------+-----------------------+----------------------------+--------+----------+----------+
|ts                 |year(CAST(ts AS DATE))|month(CAST(ts AS DATE))|dayofmonth(CAST(ts AS DATE))|hour(ts)|minute(ts)|second(ts)|
+-------------------+----------------------+-----------------------+----------------------------+--------+----------+----------+
|2015-12-31 16:00:00|2015                  |12                     |31                          |16      |0         |0         |
+-------------------+----------------------+-----------------------+----------------------------+--------+----------+----------+
```

Notice that even if you set the session local timezone, it affects only in `DataFrame` operations, neither in `Dataset` operations, `RDD` operations nor in `ScalaUDF`s. You need to properly handle timezone by yourself.

### Design of the fix

I introduced an analyzer to pass session local timezone to timezone-aware expressions and modified DateTimeUtils to take the timezone argument.

## How was this patch tested?

Existing tests and added tests for timezone aware expressions.

Author: Takuya UESHIN <ueshin@happy-camper.st>

Closes #16308 from ueshin/issues/SPARK-18350.
2969fb43
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark".

For general development tips, including info on developing Spark using an IDE, see "Useful Developer Tools".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.

## Contributing

Please review the Contribution to Spark guide for information on how to get started contributing to the project.