Skip to content
Snippets Groups Projects
user avatar
Josh Rosen authored
`TaskContext.attemptId` is misleadingly-named, since it currently returns a taskId, which uniquely identifies a particular task attempt within a particular SparkContext, instead of an attempt number, which conveys how many times a task has been attempted.

This patch deprecates `TaskContext.attemptId` and add `TaskContext.taskId` and `TaskContext.attemptNumber` fields.  Prior to this change, it was impossible to determine whether a task was being re-attempted (or was a speculative copy), which made it difficult to write unit tests for tasks that fail on early attempts or speculative tasks that complete faster than original tasks.

Earlier versions of the TaskContext docs suggest that `attemptId` behaves like `attemptNumber`, so there's an argument to be made in favor of changing this method's implementation.  Since we've decided against making that change in maintenance branches, I think it's simpler to add better-named methods and retain the old behavior for `attemptId`; if `attemptId` behaved differently in different branches, then this would cause confusing build-breaks when backporting regression tests that rely on the new `attemptId` behavior.

Most of this patch is fairly straightforward, but there is a bit of trickiness related to Mesos tasks: since there's no field in MesosTaskInfo to encode the attemptId, I packed it into the `data` field alongside the task binary.

Author: Josh Rosen <joshrosen@databricks.com>

Closes #3849 from JoshRosen/SPARK-4014 and squashes the following commits:

89d03e0 [Josh Rosen] Merge remote-tracking branch 'origin/master' into SPARK-4014
5cfff05 [Josh Rosen] Introduce wrapper for serializing Mesos task launch data.
38574d4 [Josh Rosen] attemptId -> taskAttemptId in PairRDDFunctions
a180b88 [Josh Rosen] Merge remote-tracking branch 'origin/master' into SPARK-4014
1d43aa6 [Josh Rosen] Merge remote-tracking branch 'origin/master' into SPARK-4014
eee6a45 [Josh Rosen] Merge remote-tracking branch 'origin/master' into SPARK-4014
0b10526 [Josh Rosen] Use putInt instead of putLong (silly mistake)
8c387ce [Josh Rosen] Use local with maxRetries instead of local-cluster.
cbe4d76 [Josh Rosen] Preserve attemptId behavior and deprecate it:
b2dffa3 [Josh Rosen] Address some of Reynold's minor comments
9d8d4d1 [Josh Rosen] Doc typo
1e7a933 [Josh Rosen] [SPARK-4014] Change TaskContext.attemptId to return attempt number instead of task ID.
fd515a5 [Josh Rosen] Add failing test for SPARK-4014
259936be
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at "Building Spark with Maven".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run all automated tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions. See also "Third Party Hadoop Distributions" for guidance on building a Spark application that works with a particular distribution.

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.