Skip to content
Snippets Groups Projects
user avatar
Cheng Lian authored
## What changes were proposed in this pull request?

This PR unifies DataFrame and Dataset by migrating existing DataFrame operations to Dataset and make `DataFrame` a type alias of `Dataset[Row]`.

Most Scala code changes are source compatible, but Java API is broken as Java knows nothing about Scala type alias (mostly replacing `DataFrame` with `Dataset<Row>`).

There are several noticeable API changes related to those returning arrays:

1.  `collect`/`take`

    -   Old APIs in class `DataFrame`:

        ```scala
        def collect(): Array[Row]
        def take(n: Int): Array[Row]
        ```

    -   New APIs in class `Dataset[T]`:

        ```scala
        def collect(): Array[T]
        def take(n: Int): Array[T]

        def collectRows(): Array[Row]
        def takeRows(n: Int): Array[Row]
        ```

    Two specialized methods `collectRows` and `takeRows` are added because Java doesn't support returning generic arrays. Thus, for example, `DataFrame.collect(): Array[T]` actually returns `Object` instead of `Array<T>` from Java side.

    Normally, Java users may fall back to `collectAsList` and `takeAsList`.  The two new specialized versions are added to avoid performance regression in ML related code (but maybe I'm wrong and they are not necessary here).

1.  `randomSplit`

    -   Old APIs in class `DataFrame`:

        ```scala
        def randomSplit(weights: Array[Double], seed: Long): Array[DataFrame]
        def randomSplit(weights: Array[Double]): Array[DataFrame]
        ```

    -   New APIs in class `Dataset[T]`:

        ```scala
        def randomSplit(weights: Array[Double], seed: Long): Array[Dataset[T]]
        def randomSplit(weights: Array[Double]): Array[Dataset[T]]
        ```

    Similar problem as above, but hasn't been addressed for Java API yet.  We can probably add `randomSplitAsList` to fix this one.

1.  `groupBy`

    Some original `DataFrame.groupBy` methods have conflicting signature with original `Dataset.groupBy` methods.  To distinguish these two, typed `Dataset.groupBy` methods are renamed to `groupByKey`.

Other noticeable changes:

1.  Dataset always do eager analysis now

    We used to support disabling DataFrame eager analysis to help reporting partially analyzed malformed logical plan on analysis failure.  However, Dataset encoders requires eager analysi during Dataset construction.  To preserve the error reporting feature, `AnalysisException` now takes an extra `Option[LogicalPlan]` argument to hold the partially analyzed plan, so that we can check the plan tree when reporting test failures.  This plan is passed by `QueryExecution.assertAnalyzed`.

## How was this patch tested?

Existing tests do the work.

## TODO

- [ ] Fix all tests
- [ ] Re-enable MiMA check
- [ ] Update ScalaDoc (`since`, `group`, and example code)

Author: Cheng Lian <lian@databricks.com>
Author: Yin Huai <yhuai@databricks.com>
Author: Wenchen Fan <wenchen@databricks.com>
Author: Cheng Lian <liancheng@users.noreply.github.com>

Closes #11443 from liancheng/ds-to-df.
1d542785
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at "Building Spark". For developing Spark using an IDE, see Eclipse and IntelliJ.

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.