Skip to content
Snippets Groups Projects
user avatar
Sean Owen authored
[SPARK-14280][BUILD][WIP] Update change-version.sh and pom.xml to add Scala 2.12 profiles and enable 2.12 compilation

…build; fix some things that will be warnings or errors in 2.12; restore Scala 2.12 profile infrastructure

## What changes were proposed in this pull request?

This change adds back the infrastructure for a Scala 2.12 build, but does not enable it in the release or Python test scripts.

In order to make that meaningful, it also resolves compile errors that the code hits in 2.12 only, in a way that still works with 2.11.

It also updates dependencies to the earliest minor release of dependencies whose current version does not yet support Scala 2.12. This is in a sense covered by other JIRAs under the main umbrella, but implemented here. The versions below still work with 2.11, and are the _latest_ maintenance release in the _earliest_ viable minor release.

- Scalatest 2.x -> 3.0.3
- Chill 0.8.0 -> 0.8.4
- Clapper 1.0.x -> 1.1.2
- json4s 3.2.x -> 3.4.2
- Jackson 2.6.x -> 2.7.9 (required by json4s)

This change does _not_ fully enable a Scala 2.12 build:

- It will also require dropping support for Kafka before 0.10. Easy enough, just didn't do it yet here
- It will require recreating `SparkILoop` and `Main` for REPL 2.12, which is SPARK-14650. Possible to do here too.

What it does do is make changes that resolve much of the remaining gap without affecting the current 2.11 build.

## How was this patch tested?

Existing tests and build. Manually tested with `./dev/change-scala-version.sh 2.12` to verify it compiles, modulo the exceptions above.

Author: Sean Owen <sowen@cloudera.com>

Closes #18645 from srowen/SPARK-14280.
12ab7f7e
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page

Python Packaging

This README file only contains basic information related to pip installed PySpark. This packaging is currently experimental and may change in future versions (although we will do our best to keep compatibility). Using PySpark requires the Spark JARs, and if you are building this from source please see the builder instructions at "Building Spark".

The Python packaging for Spark is not intended to replace all of the other use cases. This Python packaged version of Spark is suitable for interacting with an existing cluster (be it Spark standalone, YARN, or Mesos) - but does not contain the tools required to setup your own standalone Spark cluster. You can download the full version of Spark from the Apache Spark downloads page.

NOTE: If you are using this with a Spark standalone cluster you must ensure that the version (including minor version) matches or you may experience odd errors.

Python Requirements

At its core PySpark depends on Py4J (currently version 0.10.6), but additional sub-packages have their own requirements (including numpy and pandas).