Skip to content
Snippets Groups Projects
user avatar
Cheng Lian authored
This PR fixes a Parquet output file name collision bug which may cause data loss.  Changes made:

1.  Identify each write job issued by `InsertIntoHadoopFsRelation` with a UUID

    All concrete data sources which extend `HadoopFsRelation` (Parquet and ORC for now) must use this UUID to generate task output file path to avoid name collision.

2.  Make `TestHive` use a local mode `SparkContext` with 32 threads to increase parallelism

    The major reason for this is that, the original parallelism of 2 is too low to reproduce the data loss issue.  Also, higher concurrency may potentially caught more concurrency bugs during testing phase. (It did help us spotted SPARK-8501.)

3. `OrcSourceSuite` was updated to workaround SPARK-8501, which we detected along the way.

NOTE: This PR is made a little bit more complicated than expected because we hit two other bugs on the way and have to work them around. See [SPARK-8501] [1] and [SPARK-8513] [2].

[1]: https://github.com/liancheng/spark/tree/spark-8501
[2]: https://github.com/liancheng/spark/tree/spark-8513

----

Some background and a summary of offline discussion with yhuai about this issue for better understanding:

In 1.4.0, we added `HadoopFsRelation` to abstract partition support of all data sources that are based on Hadoop `FileSystem` interface.  Specifically, this makes partition discovery, partition pruning, and writing dynamic partitions for data sources much easier.

To support appending, the Parquet data source tries to find out the max part number of part-files in the destination directory (i.e., `<id>` in output file name `part-r-<id>.gz.parquet`) at the beginning of the write job.  In 1.3.0, this step happens on driver side before any files are written.  However, in 1.4.0, this is moved to task side.  Unfortunately, for tasks scheduled later, they may see wrong max part number generated of files newly written by other finished tasks within the same job.  This actually causes a race condition.  In most cases, this only causes nonconsecutive part numbers in output file names.  But when the DataFrame contains thousands of RDD partitions, it's likely that two tasks may choose the same part number, then one of them gets overwritten by the other.

Before `HadoopFsRelation`, Spark SQL already supports appending data to Hive tables.  From a user's perspective, these two look similar.  However, they differ a lot internally.  When data are inserted into Hive tables via Spark SQL, `InsertIntoHiveTable` simulates Hive's behaviors:

1.  Write data to a temporary location

2.  Move data in the temporary location to the final destination location using

    -   `Hive.loadTable()` for non-partitioned table
    -   `Hive.loadPartition()` for static partitions
    -   `Hive.loadDynamicPartitions()` for dynamic partitions

The important part is that, `Hive.copyFiles()` is invoked in step 2 to move the data to the destination directory (I found the name is kinda confusing since no "copying" occurs here, we are just moving and renaming stuff).  If a file in the source directory and another file in the destination directory happen to have the same name, say `part-r-00001.parquet`, the former is moved to the destination directory and renamed with a `_copy_N` postfix (`part-r-00001_copy_1.parquet`).  That's how Hive handles appending and avoids name collision between different write jobs.

Some alternatives fixes considered for this issue:

1.  Use a similar approach as Hive

    This approach is not preferred in Spark 1.4.0 mainly because file metadata operations in S3 tend to be slow, especially for tables with lots of file and/or partitions.  That's why `InsertIntoHadoopFsRelation` just inserts to destination directory directly, and is often used together with `DirectParquetOutputCommitter` to reduce latency when working with S3.  This means, we don't have the chance to do renaming, and must avoid name collision from the very beginning.

2.  Same as 1.3, just move max part number detection back to driver side

    This isn't doable because unlike 1.3, 1.4 also takes dynamic partitioning into account.  When inserting into dynamic partitions, we don't know which partition directories will be touched on driver side before issuing the write job.  Checking all partition directories is simply too expensive for tables with thousands of partitions.

3.  Add extra component to output file names to avoid name collision

    This seems to be the only reasonable solution for now.  To be more specific, we need a JOB level unique identifier to identify all write jobs issued by `InsertIntoHadoopFile`.  Notice that TASK level unique identifiers can NOT be used.  Because in this way a speculative task will write to a different output file from the original task.  If both tasks succeed, duplicate output will be left behind.  Currently, the ORC data source adds `System.currentTimeMillis` to the output file name for uniqueness.  This doesn't work because of exactly the same reason.

    That's why this PR adds a job level random UUID in `BaseWriterContainer` (which is used by `InsertIntoHadoopFsRelation` to issue write jobs).  The drawback is that record order is not preserved any more (output files of a later job may be listed before those of a earlier job).  However, we never promise to preserve record order when writing data, and Hive doesn't promise this either because the `_copy_N` trick breaks the order.

Author: Cheng Lian <lian@databricks.com>

Closes #6864 from liancheng/spark-8406 and squashes the following commits:

db7a46a [Cheng Lian] More comments
f5c1133 [Cheng Lian] Addresses comments
85c478e [Cheng Lian] Workarounds SPARK-8513
088c76c [Cheng Lian] Adds comment about SPARK-8501
99a5e7e [Cheng Lian] Uses job level UUID in SimpleTextRelation and avoids double task abortion
4088226 [Cheng Lian] Works around SPARK-8501
1d7d206 [Cheng Lian] Adds more logs
8966bbb [Cheng Lian] Fixes Scala style issue
18b7003 [Cheng Lian] Uses job level UUID to take speculative tasks into account
3806190 [Cheng Lian] Lets TestHive use all cores by default
748dbd7 [Cheng Lian] Adding UUID to output file name to avoid accidental overwriting
0818fdec
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at "Building Spark".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions. See also "Third Party Hadoop Distributions" for guidance on building a Spark application that works with a particular distribution.

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.