Skip to content
Snippets Groups Projects
user avatar
Marcelo Vanzin authored
Spark's I/O encryption uses an ephemeral key for each driver instance.
So driver B cannot decrypt data written by driver A since it doesn't
have the correct key.

The write ahead log is used for recovery, thus needs to be readable by
a different driver. So it cannot be encrypted by Spark's I/O encryption
code.

The BlockManager APIs used by the WAL code to write the data automatically
encrypt data, so changes are needed so that callers can to opt out of
encryption.

Aside from that, the "putBytes" API in the BlockManager does not do
encryption, so a separate situation arised where the WAL would write
unencrypted data to the BM and, when those blocks were read, decryption
would fail. So the WAL code needs to ask the BM to encrypt that data
when encryption is enabled; this code is not optimal since it results
in a (temporary) second copy of the data block in memory, but should be
OK for now until a more performant solution is added. The non-encryption
case should not be affected.

Tested with new unit tests, and by running streaming apps that do
recovery using the WAL data with I/O encryption turned on.

Author: Marcelo Vanzin <vanzin@cloudera.com>

Closes #16862 from vanzin/SPARK-19520.
0169360e
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark".

For general development tips, including info on developing Spark using an IDE, see "Useful Developer Tools".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.

## Contributing

Please review the Contribution to Spark guide for information on how to get started contributing to the project.