- Aug 06, 2014
-
-
Nicholas Chammas authored
As described in [SPARK-2627](https://issues.apache.org/jira/browse/SPARK-2627), we'd like Python code to automatically be checked for PEP 8 compliance by Jenkins. This pull request aims to do that. Notes: * We may need to install [`pep8`](https://pypi.python.org/pypi/pep8) on the build server. * I'm expecting tests to fail now that PEP 8 compliance is being checked as part of the build. I'm fine with cleaning up any remaining PEP 8 violations as part of this pull request. * I did not understand why the RAT and scalastyle reports are saved to text files. I did the same for the PEP 8 check, but only so that the console output style can match those for the RAT and scalastyle checks. The PEP 8 report is removed right after the check is complete. * Updates to the ["Contributing to Spark"](https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark) guide will be submitted elsewhere, as I don't believe that text is part of the Spark repo. Author: Nicholas Chammas <nicholas.chammas@gmail.com> Author: nchammas <nicholas.chammas@gmail.com> Closes #1744 from nchammas/master and squashes the following commits: 274b238 [Nicholas Chammas] [SPARK-2627] [PySpark] minor indentation changes 983d963 [nchammas] Merge pull request #5 from apache/master 1db5314 [nchammas] Merge pull request #4 from apache/master 0e0245f [Nicholas Chammas] [SPARK-2627] undo erroneous whitespace fixes bf30942 [Nicholas Chammas] [SPARK-2627] PEP8: comment spacing 6db9a44 [nchammas] Merge pull request #3 from apache/master 7b4750e [Nicholas Chammas] merge upstream changes 91b7584 [Nicholas Chammas] [SPARK-2627] undo unnecessary line breaks 44e3e56 [Nicholas Chammas] [SPARK-2627] use tox.ini to exclude files b09fae2 [Nicholas Chammas] don't wrap comments unnecessarily bfb9f9f [Nicholas Chammas] [SPARK-2627] keep up with the PEP 8 fixes 9da347f [nchammas] Merge pull request #2 from apache/master aa5b4b5 [Nicholas Chammas] [SPARK-2627] follow Spark bash style for if blocks d0a83b9 [Nicholas Chammas] [SPARK-2627] check that pep8 downloaded fine dffb5dd [Nicholas Chammas] [SPARK-2627] download pep8 at runtime a1ce7ae [Nicholas Chammas] [SPARK-2627] space out test report sections 21da538 [Nicholas Chammas] [SPARK-2627] it's PEP 8, not PEP8 6f4900b [Nicholas Chammas] [SPARK-2627] more misc PEP 8 fixes fe57ed0 [Nicholas Chammas] removing merge conflict backups 9c01d4c [nchammas] Merge pull request #1 from apache/master 9a66cb0 [Nicholas Chammas] resolving merge conflicts a31ccc4 [Nicholas Chammas] [SPARK-2627] miscellaneous PEP 8 fixes beaa9ac [Nicholas Chammas] [SPARK-2627] fail check on non-zero status 723ed39 [Nicholas Chammas] always delete the report file 0541ebb [Nicholas Chammas] [SPARK-2627] call Python linter from run-tests 12440fa [Nicholas Chammas] [SPARK-2627] add Scala linter 61c07b9 [Nicholas Chammas] [SPARK-2627] add Python linter 75ad552 [Nicholas Chammas] make check output style consistent
-
Davies Liu authored
Handle null in schemaRDD during converting them into Python. Author: Davies Liu <davies.liu@gmail.com> Closes #1802 from davies/json and squashes the following commits: 88e6b1f [Davies Liu] handle null in schemaRDD()
-
- Aug 05, 2014
-
-
Yin Huai authored
This PR aims to finalize accepted data value types in Python RDDs provided to Python `applySchema`. JIRA: https://issues.apache.org/jira/browse/SPARK-2854 Author: Yin Huai <huai@cse.ohio-state.edu> Closes #1793 from yhuai/SPARK-2854 and squashes the following commits: 32f0708 [Yin Huai] LongType only accepts long values. c2b23dd [Yin Huai] Do data type conversions based on the specified Spark SQL data type.
-
Michael Giannakopoulos authored
Related to Jira Issue: [SPARK-2550](https://issues.apache.org/jira/browse/SPARK-2550?jql=project%20%3D%20SPARK%20AND%20resolution%20%3D%20Unresolved%20AND%20priority%20%3D%20Major%20ORDER%20BY%20key%20DESC) Author: Michael Giannakopoulos <miccagiann@gmail.com> Closes #1775 from miccagiann/linearMethodsReg and squashes the following commits: cb774c3 [Michael Giannakopoulos] MiniBatchFraction added in related PythonMLLibAPI java stubs. 81fcbc6 [Michael Giannakopoulos] Fixing a typo-error. 8ad263e [Michael Giannakopoulos] Adding regularizer type and intercept parameters to LogisticRegressionWithSGD and SVMWithSGD.
-
- Aug 04, 2014
-
-
Davies Liu authored
serializer is imported multiple times during doctests, so it's better to make _hijack_namedtuple() safe to be called multiple times. Author: Davies Liu <davies.liu@gmail.com> Closes #1771 from davies/fix and squashes the following commits: 1a9e336 [Davies Liu] fix unit tests
-
Davies Liu authored
Add an hook to replace original namedtuple with an pickable one, then namedtuple could be used in RDDs. PS: pyspark should be import BEFORE "from collections import namedtuple" Author: Davies Liu <davies.liu@gmail.com> Closes #1623 from davies/namedtuple and squashes the following commits: 045dad8 [Davies Liu] remove unrelated code changes 4132f32 [Davies Liu] address comment 55b1c1a [Davies Liu] fix tests 61f86eb [Davies Liu] replace all the reference of namedtuple to new hacked one 98df6c6 [Davies Liu] Merge branch 'master' of github.com:apache/spark into namedtuple f7b1bde [Davies Liu] add hack for CloudPickleSerializer 0c5c849 [Davies Liu] Merge branch 'master' of github.com:apache/spark into namedtuple 21991e6 [Davies Liu] hack namedtuple in __main__ module, make it picklable. 93b03b8 [Davies Liu] pickable namedtuple
-
- Aug 03, 2014
-
-
Davies Liu authored
Kill only the python worker related to cancelled tasks. The daemon will start a background thread to monitor all the opened sockets for all workers. If the socket is closed by JVM, this thread will kill the worker. When an task is cancelled, the socket to worker will be closed, then the worker will be killed by deamon. Author: Davies Liu <davies.liu@gmail.com> Closes #1643 from davies/kill and squashes the following commits: 8ffe9f3 [Davies Liu] kill worker by deamon, because runtime.exec() is too heavy 46ca150 [Davies Liu] address comment acd751c [Davies Liu] kill the worker when task is canceled
-
Michael Armbrust authored
Many users have reported being confused by the distinction between the `sql` and `hql` methods. Specifically, many users think that `sql(...)` cannot be used to read hive tables. In this PR I introduce a new configuration option `spark.sql.dialect` that picks which dialect with be used for parsing. For SQLContext this must be set to `sql`. In `HiveContext` it defaults to `hiveql` but can also be set to `sql`. The `hql` and `hiveql` methods continue to act the same but are now marked as deprecated. **This is a possibly breaking change for some users unless they set the dialect manually, though this is unlikely.** For example: `hiveContex.sql("SELECT 1")` will now throw a parsing exception by default. Author: Michael Armbrust <michael@databricks.com> Closes #1746 from marmbrus/sqlLanguageConf and squashes the following commits: ad375cc [Michael Armbrust] Merge remote-tracking branch 'apache/master' into sqlLanguageConf 20c43f8 [Michael Armbrust] override function instead of just setting the value 7e4ae93 [Michael Armbrust] Deprecate hql() method in favor of a config option, 'spark.sql.dialect'
-
- Aug 02, 2014
-
-
Michael Armbrust authored
There have been user complaints that the difference between `registerAsTable` and `saveAsTable` is too subtle. This PR addresses this by renaming `registerAsTable` to `registerTempTable`, which more clearly reflects what is happening. `registerAsTable` remains, but will cause a deprecation warning. Author: Michael Armbrust <michael@databricks.com> Closes #1743 from marmbrus/registerTempTable and squashes the following commits: d031348 [Michael Armbrust] Merge remote-tracking branch 'apache/master' into registerTempTable 4dff086 [Michael Armbrust] Fix .java files too 89a2f12 [Michael Armbrust] Merge remote-tracking branch 'apache/master' into registerTempTable 0b7b71e [Michael Armbrust] Rename registerAsTable to registerTempTable
-
Yin Huai authored
The cause is explained in https://issues.apache.org/jira/browse/SPARK-2797. Author: Yin Huai <huai@cse.ohio-state.edu> Closes #1745 from yhuai/SPARK-2797 and squashes the following commits: 7b1627d [Yin Huai] The unpersist method of the Scala RDD cannot be called without the input parameter (blocking) from PySpark.
-
Michael Armbrust authored
This patch adds the ability to register lambda functions written in Python, Java or Scala as UDFs for use in SQL or HiveQL. Scala: ```scala registerFunction("strLenScala", (_: String).length) sql("SELECT strLenScala('test')") ``` Python: ```python sqlCtx.registerFunction("strLenPython", lambda x: len(x), IntegerType()) sqlCtx.sql("SELECT strLenPython('test')") ``` Java: ```java sqlContext.registerFunction("stringLengthJava", new UDF1<String, Integer>() { Override public Integer call(String str) throws Exception { return str.length(); } }, DataType.IntegerType); sqlContext.sql("SELECT stringLengthJava('test')"); ``` Author: Michael Armbrust <michael@databricks.com> Closes #1063 from marmbrus/udfs and squashes the following commits: 9eda0fe [Michael Armbrust] newline 747c05e [Michael Armbrust] Add some scala UDF tests. d92727d [Michael Armbrust] Merge remote-tracking branch 'apache/master' into udfs 005d684 [Michael Armbrust] Fix naming and formatting. d14dac8 [Michael Armbrust] Fix last line of autogened java files. 8135c48 [Michael Armbrust] Move UDF unit tests to pyspark. 40b0ffd [Michael Armbrust] Merge remote-tracking branch 'apache/master' into udfs 6a36890 [Michael Armbrust] Switch logging so that SQLContext can be serializable. 7a83101 [Michael Armbrust] Drop toString 795fd15 [Michael Armbrust] Try to avoid capturing SQLContext. e54fb45 [Michael Armbrust] Docs and tests. 437cbe3 [Michael Armbrust] Update use of dataTypes, fix some python tests, address review comments. 01517d6 [Michael Armbrust] Merge remote-tracking branch 'origin/master' into udfs 8e6c932 [Michael Armbrust] WIP 3f96a52 [Michael Armbrust] Merge remote-tracking branch 'origin/master' into udfs 6237c8d [Michael Armbrust] WIP 2766f0b [Michael Armbrust] Move udfs support to SQL from hive. Add support for Java UDFs. 0f7d50c [Michael Armbrust] Draft of native Spark SQL UDFs for Scala and Python.
-
Joseph K. Bradley authored
Added experimental Python API for Decision Trees. API: * class DecisionTreeModel ** predict() for single examples and RDDs, taking both feature vectors and LabeledPoints ** numNodes() ** depth() ** __str__() * class DecisionTree ** trainClassifier() ** trainRegressor() ** train() Examples and testing: * Added example testing classification and regression with batch prediction: examples/src/main/python/mllib/tree.py * Have also tested example usage in doc of python/pyspark/mllib/tree.py which tests single-example prediction with dense and sparse vectors Also: Small bug fix in python/pyspark/mllib/_common.py: In _linear_predictor_typecheck, changed check for RDD to use isinstance() instead of type() in order to catch RDD subclasses. CC mengxr manishamde Author: Joseph K. Bradley <joseph.kurata.bradley@gmail.com> Closes #1727 from jkbradley/decisiontree-python-new and squashes the following commits: 3744488 [Joseph K. Bradley] Renamed test tree.py to decision_tree_runner.py Small updates based on github review. 6b86a9d [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into decisiontree-python-new affceb9 [Joseph K. Bradley] * Fixed bug in doc tests in pyspark/mllib/util.py caused by change in loadLibSVMFile behavior. (It used to threshold labels at 0 to make them 0/1, but it now leaves them as they are.) * Fixed small bug in loadLibSVMFile: If a data file had no features, then loadLibSVMFile would create a single all-zero feature. 67a29bc [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into decisiontree-python-new cf46ad7 [Joseph K. Bradley] Python DecisionTreeModel * predict(empty RDD) returns an empty RDD instead of an error. * Removed support for calling predict() on LabeledPoint and RDD[LabeledPoint] * predict() does not cache serialized RDD any more. aa29873 [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into decisiontree-python-new bf21be4 [Joseph K. Bradley] removed old run() func from DecisionTree fa10ea7 [Joseph K. Bradley] Small style update 7968692 [Joseph K. Bradley] small braces typo fix e34c263 [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into decisiontree-python-new 4801b40 [Joseph K. Bradley] Small style update to DecisionTreeSuite db0eab2 [Joseph K. Bradley] Merge branch 'decisiontree-bugfix2' into decisiontree-python-new 6873fa9 [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into decisiontree-python-new 225822f [Joseph K. Bradley] Bug: In DecisionTree, the method sequentialBinSearchForOrderedCategoricalFeatureInClassification() indexed bins from 0 to (math.pow(2, featureCategories.toInt - 1) - 1). This upper bound is the bound for unordered categorical features, not ordered ones. The upper bound should be the arity (i.e., max value) of the feature. 93953f1 [Joseph K. Bradley] Likely done with Python API. 6df89a9 [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into decisiontree-python-new 4562c08 [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into decisiontree-python-new 665ba78 [Joseph K. Bradley] Small updates towards Python DecisionTree API 188cb0d [Joseph K. Bradley] Merge branch 'decisiontree-bugfix' into decisiontree-python-new 6622247 [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into decisiontree-python-new b8fac57 [Joseph K. Bradley] Finished Python DecisionTree API and example but need to test a bit more. 2b20c61 [Joseph K. Bradley] Small doc and style updates 1b29c13 [Joseph K. Bradley] Merge branch 'decisiontree-bugfix' into decisiontree-python-new 584449a [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into decisiontree-python-new dab0b67 [Joseph K. Bradley] Added documentation for DecisionTree internals 8bb8aa0 [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into decisiontree-bugfix 978cfcf [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into decisiontree-bugfix 6eed482 [Joseph K. Bradley] In DecisionTree: Changed from using procedural syntax for functions returning Unit to explicitly writing Unit return type. 376dca2 [Joseph K. Bradley] Updated meaning of maxDepth by 1 to fit scikit-learn and rpart. * In code, replaced usages of maxDepth <-- maxDepth + 1 * In params, replace settings of maxDepth <-- maxDepth - 1 e06e423 [Joseph K. Bradley] Merge branch 'decisiontree-bugfix' into decisiontree-python-new bab3f19 [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into decisiontree-python-new 59750f8 [Joseph K. Bradley] * Updated Strategy to check numClassesForClassification only if algo=Classification. * Updates based on comments: ** DecisionTreeRunner *** Made dataFormat arg default to libsvm ** Small cleanups ** tree.Node: Made recursive helper methods private, and renamed them. 52e17c5 [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into decisiontree-bugfix f5a036c [Joseph K. Bradley] Merge branch 'decisiontree-bugfix' into decisiontree-python-new da50db7 [Joseph K. Bradley] Added one more test to DecisionTreeSuite: stump with 2 continuous variables for binary classification. Caused problems in past, but fixed now. 8e227ea [Joseph K. Bradley] Changed Strategy so it only requires numClassesForClassification >= 2 for classification cd1d933 [Joseph K. Bradley] Merge branch 'decisiontree-bugfix' into decisiontree-python-new 8ea8750 [Joseph K. Bradley] Bug fix: Off-by-1 when finding thresholds for splits for continuous features. 8a758db [Joseph K. Bradley] Merge branch 'decisiontree-bugfix' into decisiontree-python-new 5fe44ed [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into decisiontree-python-new 2283df8 [Joseph K. Bradley] 2 bug fixes. 73fbea2 [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into decisiontree-bugfix 5f920a1 [Joseph K. Bradley] Demonstration of bug before submitting fix: Updated DecisionTreeSuite so that 3 tests fail. Will describe bug in next commit. f825352 [Joseph K. Bradley] Wrote Python API and example for DecisionTree. Also added toString, depth, and numNodes methods to DecisionTreeModel.
-
Andrew Or authored
When standalone Workers launch executors, they inherit the Spark home set by the driver. This means if the worker machines do not share the same directory structure as the driver node, the Workers will attempt to run scripts (e.g. bin/compute-classpath.sh) that do not exist locally and fail. This is a common scenario if the driver is launched from outside of the cluster. The solution is to simply not pass the driver's Spark home to the Workers. This PR further makes an attempt to avoid overloading the usages of `spark.home`, which is now only used for setting executor Spark home on Mesos and in python. This is based on top of #1392 and originally reported by YanTangZhai. Tested on standalone cluster. Author: Andrew Or <andrewor14@gmail.com> Closes #1734 from andrewor14/spark-home-reprise and squashes the following commits: f71f391 [Andrew Or] Revert changes in python 1c2532c [Andrew Or] Merge branch 'master' of github.com:apache/spark into spark-home-reprise 188fc5d [Andrew Or] Avoid using spark.home where possible 09272b7 [Andrew Or] Always use Worker's working directory as spark home
-
Jeremy Freeman authored
These changes allow StatCounters to work properly on NumPy arrays, to fix the issue reported here (https://issues.apache.org/jira/browse/SPARK-2012). If NumPy is installed, the NumPy functions ``maximum``, ``minimum``, and ``sqrt``, which work on arrays, are used to merge statistics. If not, we fall back on scalar operators, so it will work on arrays with NumPy, but will also work without NumPy. New unit tests added, along with a check for NumPy in the tests. Author: Jeremy Freeman <the.freeman.lab@gmail.com> Closes #1725 from freeman-lab/numpy-max-statcounter and squashes the following commits: fe973b1 [Jeremy Freeman] Avoid duplicate array import in tests 7f0e397 [Jeremy Freeman] Refactored check for numpy 8e764dd [Jeremy Freeman] Explicit numpy imports 875414c [Jeremy Freeman] Fixed indents 1c8a832 [Jeremy Freeman] Unit tests for StatCounter with NumPy arrays 176a127 [Jeremy Freeman] Use numpy arrays in StatCounter
-
- Aug 01, 2014
-
-
Michael Giannakopoulos authored
Related to issue: [SPARK-2550](https://issues.apache.org/jira/browse/SPARK-2550?jql=project%20%3D%20SPARK%20AND%20resolution%20%3D%20Unresolved%20AND%20priority%20%3D%20Major%20ORDER%20BY%20key%20DESC). Author: Michael Giannakopoulos <miccagiann@gmail.com> Closes #1624 from miccagiann/new-branch and squashes the following commits: c02e5f5 [Michael Giannakopoulos] Merge cleanly with upstream/master. 8dcb888 [Michael Giannakopoulos] Putting the if/else if statements in brackets. fed8eaa [Michael Giannakopoulos] Adding a space in the message related to the IllegalArgumentException. 44e6ff0 [Michael Giannakopoulos] Adding a blank line before python class LinearRegressionWithSGD. 8eba9c5 [Michael Giannakopoulos] Change function signatures. Exception is thrown from the scala component and not from the python one. 638be47 [Michael Giannakopoulos] Modified code to comply with code standards. ec50ee9 [Michael Giannakopoulos] Shorten the if-elif-else statement in regression.py file b962744 [Michael Giannakopoulos] Replaced the enum classes, with strings-keywords for defining the values of 'regType' parameter. 78853ec [Michael Giannakopoulos] Providing intercept and regualizer functionallity for linear methods in only one function. 3ac8874 [Michael Giannakopoulos] Added support for regularizer and intercection parameters for linear regression method.
-
Josh Rosen authored
Curently, daemon.py forks a pool of numProcessors subprocesses, and those processes fork themselves again to create the actual Python worker processes that handle data. I think that this extra layer of indirection is unnecessary and adds a lot of complexity. This commit attempts to remove this middle layer of subprocesses by launching the workers directly from daemon.py. See https://github.com/mesos/spark/pull/563 for the original PR that added daemon.py, where I raise some issues with the current design. Author: Josh Rosen <joshrosen@apache.org> Closes #1680 from JoshRosen/pyspark-daemon and squashes the following commits: 5abbcb9 [Josh Rosen] Replace magic number: 4 -> EINTR 5495dff [Josh Rosen] Throw IllegalStateException if worker launch fails. b79254d [Josh Rosen] Detect failed fork() calls; improve error logging. 282c2c4 [Josh Rosen] Remove daemon.py exit logging, since it caused problems: 8554536 [Josh Rosen] Fix daemon’s shutdown(); log shutdown reason. 4e0fab8 [Josh Rosen] Remove shared-memory exit_flag; don't die on worker death. e9892b4 [Josh Rosen] [WIP] [SPARK-2764] Simplify daemon.py process structure.
-
Davies Liu authored
Convert Row in JavaSchemaRDD into Array[Any] and unpickle them as tuple in Python, then convert them into namedtuple, so use can access fields just like attributes. This will let nested structure can be accessed as object, also it will reduce the size of serialized data and better performance. root |-- field1: integer (nullable = true) |-- field2: string (nullable = true) |-- field3: struct (nullable = true) | |-- field4: integer (nullable = true) | |-- field5: array (nullable = true) | | |-- element: integer (containsNull = false) |-- field6: array (nullable = true) | |-- element: struct (containsNull = false) | | |-- field7: string (nullable = true) Then we can access them by row.field3.field5[0] or row.field6[5].field7 It also will infer the schema in Python, convert Row/dict/namedtuple/objects into tuple before serialization, then call applySchema in JVM. During inferSchema(), the top level of dict in row will be StructType, but any nested dictionary will be MapType. You can use pyspark.sql.Row to convert unnamed structure into Row object, make the RDD can be inferable. Such as: ctx.inferSchema(rdd.map(lambda x: Row(a=x[0], b=x[1])) Or you could use Row to create a class just like namedtuple, for example: Person = Row("name", "age") ctx.inferSchema(rdd.map(lambda x: Person(*x))) Also, you can call applySchema to apply an schema to a RDD of tuple/list and turn it into a SchemaRDD. The `schema` should be StructType, see the API docs for details. schema = StructType([StructField("name, StringType, True), StructType("age", IntegerType, True)]) ctx.applySchema(rdd, schema) PS: In order to use namedtuple to inferSchema, you should make namedtuple picklable. Author: Davies Liu <davies.liu@gmail.com> Closes #1598 from davies/nested and squashes the following commits: f1d15b6 [Davies Liu] verify schema with the first few rows 8852aaf [Davies Liu] check type of schema abe9e6e [Davies Liu] address comments 61b2292 [Davies Liu] add @deprecated to pythonToJavaMap 1e5b801 [Davies Liu] improve cache of classes 51aa135 [Davies Liu] use Row to infer schema e9c0d5c [Davies Liu] remove string typed schema 353a3f2 [Davies Liu] fix code style 63de8f8 [Davies Liu] fix typo c79ca67 [Davies Liu] fix serialization of nested data 6b258b5 [Davies Liu] fix pep8 9d8447c [Davies Liu] apply schema provided by string of names f5df97f [Davies Liu] refactor, address comments 9d9af55 [Davies Liu] use arrry to applySchema and infer schema in Python 84679b3 [Davies Liu] Merge branch 'master' of github.com:apache/spark into nested 0eaaf56 [Davies Liu] fix doc tests b3559b4 [Davies Liu] use generated Row instead of namedtuple c4ddc30 [Davies Liu] fix conflict between name of fields and variables 7f6f251 [Davies Liu] address all comments d69d397 [Davies Liu] refactor 2cc2d45 [Davies Liu] refactor 182fb46 [Davies Liu] refactor bc6e9e1 [Davies Liu] switch to new Schema API 547bf3e [Davies Liu] Merge branch 'master' into nested a435b5a [Davies Liu] add docs and code refactor 2c8debc [Davies Liu] Merge branch 'master' into nested 644665a [Davies Liu] use tuple and namedtuple for schemardd
-
Doris Xin authored
Author: Doris Xin <doris.s.xin@gmail.com> Closes #1713 from dorx/pythonCorrelation and squashes the following commits: 5f1e60c [Doris Xin] reviewer comments. 46ff6eb [Doris Xin] reviewer comments. ad44085 [Doris Xin] style fix e69d446 [Doris Xin] fixed missed conflicts. eb5bf56 [Doris Xin] merge master cc9f725 [Doris Xin] units passed. 9141a63 [Doris Xin] WIP2 d199f1f [Doris Xin] Moved correlation names into a public object cd163d6 [Doris Xin] WIP
-
- Jul 31, 2014
-
-
Doris Xin authored
RandomRDDGenerators but without support for randomRDD and randomVectorRDD, which take in arbitrary DistributionGenerator. `randomRDD.py` is named to avoid collision with the built-in Python `random` package. Author: Doris Xin <doris.s.xin@gmail.com> Closes #1628 from dorx/pythonRDD and squashes the following commits: 55c6de8 [Doris Xin] review comments. all python units passed. f831d9b [Doris Xin] moved default args logic into PythonMLLibAPI 2d73917 [Doris Xin] fix for linalg.py 8663e6a [Doris Xin] reverting back to a single python file for random f47c481 [Doris Xin] docs update 687aac0 [Doris Xin] add RandomRDDGenerators.py to run-tests 4338f40 [Doris Xin] renamed randomRDD to rand and import as random 29d205e [Doris Xin] created mllib.random package bd2df13 [Doris Xin] typos 07ddff2 [Doris Xin] units passed. 23b2ecd [Doris Xin] WIP
-
Aaron Davidson authored
Prior to this change, every PySpark task completion opened a new socket to the accumulator server, passed its updates through, and then quit. I'm not entirely sure why PySpark always sends accumulator updates, but regardless this causes a very rapid buildup of ephemeral TCP connections that remain in the TCP_WAIT state for around a minute before being cleaned up. Rather than trying to allow these sockets to be cleaned up faster, this patch simply reuses the connection between tasks completions (since they're fed updates in a single-threaded manner by the DAGScheduler anyway). The only tricky part here was making sure that the AccumulatorServer was able to shutdown in a timely manner (i.e., stop polling for new data), and this was accomplished via minor feats of magic. I have confirmed that this patch eliminates the buildup of ephemeral sockets due to the accumulator updates. However, I did note that there were still significant sockets being created against the PySpark daemon port, but my machine was not able to create enough sockets fast enough to fail. This may not be the last time we've seen this issue, though. Author: Aaron Davidson <aaron@databricks.com> Closes #1503 from aarondav/accum and squashes the following commits: b3e12f7 [Aaron Davidson] SPARK-2282: Reuse Socket for sending accumulator updates to Pyspark
-
Michael Armbrust authored
LocalHiveContext is redundant with HiveContext. The only difference is it creates `./metastore` instead of `./metastore_db`. Author: Michael Armbrust <michael@databricks.com> Closes #1641 from marmbrus/localHiveContext and squashes the following commits: e5ec497 [Michael Armbrust] Add deprecation version 626e056 [Michael Armbrust] Don't remove from imports yet 905cc5f [Michael Armbrust] Merge remote-tracking branch 'apache/master' into localHiveContext 1c2727e [Michael Armbrust] Deprecate LocalHiveContext
-
- Jul 30, 2014
-
-
Sean Owen authored
Per discussion at https://issues.apache.org/jira/browse/SPARK-2341 , this is a look at deprecating the multiclass parameter. Thoughts welcome of course. Author: Sean Owen <srowen@gmail.com> Closes #1663 from srowen/SPARK-2341 and squashes the following commits: 8a3abd7 [Sean Owen] Suppress MIMA error for removed package private classes 18a8c8e [Sean Owen] Updates from review 83d0092 [Sean Owen] Deprecated methods with multiclass, and instead always parse target as a double (ie. multiclass = true)
-
Kan Zhang authored
JIRA issue: https://issues.apache.org/jira/browse/SPARK-2024 This PR is a followup to #455 and adds capabilities for saving PySpark RDDs using SequenceFile or any Hadoop OutputFormats. * Added RDD methods ```saveAsSequenceFile```, ```saveAsHadoopFile``` and ```saveAsHadoopDataset```, for both old and new MapReduce APIs. * Default converter for converting common data types to Writables. Users may specify custom converters to convert to desired data types. * No out-of-box support for reading/writing arrays, since ArrayWritable itself doesn't have a no-arg constructor for creating an empty instance upon reading. Users need to provide ArrayWritable subtypes. Custom converters for converting arrays to suitable ArrayWritable subtypes are also needed when writing. When reading, the default converter will convert any custom ArrayWritable subtypes to ```Object[]``` and they get pickled to Python tuples. * Added HBase and Cassandra output examples to show how custom output formats and converters can be used. cc MLnick mateiz ahirreddy pwendell Author: Kan Zhang <kzhang@apache.org> Closes #1338 from kanzhang/SPARK-2024 and squashes the following commits: c01e3ef [Kan Zhang] [SPARK-2024] code formatting 6591e37 [Kan Zhang] [SPARK-2024] renaming pickled -> pickledRDD d998ad6 [Kan Zhang] [SPARK-2024] refectoring to get method params below 10 57a7a5e [Kan Zhang] [SPARK-2024] correcting typo 75ca5bd [Kan Zhang] [SPARK-2024] Better type checking for batch serialized RDD 0bdec55 [Kan Zhang] [SPARK-2024] Refactoring newly added tests 9f39ff4 [Kan Zhang] [SPARK-2024] Adding 2 saveAsHadoopDataset tests 0c134f3 [Kan Zhang] [SPARK-2024] Test refactoring and adding couple unbatched cases 7a176df [Kan Zhang] [SPARK-2024] Add saveAsSequenceFile to PySpark
-
Naftali Harris authored
This avoids basically doing 1 - 1, for example: ```python >>> from math import exp >>> margin = -40 >>> 1 - 1 / (1 + exp(margin)) 0.0 >>> exp(margin) / (1 + exp(margin)) 4.248354255291589e-18 >>> ``` Author: Naftali Harris <naftaliharris@gmail.com> Closes #1652 from naftaliharris/patch-2 and squashes the following commits: 0d55a9f [Naftali Harris] Avoid numerical instability
-
Yin Huai authored
The current PR contains the following changes: * Expose `DataType`s in the sql package (internal details are private to sql). * Users can create Rows. * Introduce `applySchema` to create a `SchemaRDD` by applying a `schema: StructType` to an `RDD[Row]`. * Add a function `simpleString` to every `DataType`. Also, the schema represented by a `StructType` can be visualized by `printSchema`. * `ScalaReflection.typeOfObject` provides a way to infer the Catalyst data type based on an object. Also, we can compose `typeOfObject` with some custom logics to form a new function to infer the data type (for different use cases). * `JsonRDD` has been refactored to use changes introduced by this PR. * Add a field `containsNull` to `ArrayType`. So, we can explicitly mark if an `ArrayType` can contain null values. The default value of `containsNull` is `false`. New APIs are introduced in the sql package object and SQLContext. You can find the scaladoc at [sql package object](http://yhuai.github.io/site/api/scala/index.html#org.apache.spark.sql.package) and [SQLContext](http://yhuai.github.io/site/api/scala/index.html#org.apache.spark.sql.SQLContext). An example of using `applySchema` is shown below. ```scala import org.apache.spark.sql._ val sqlContext = new org.apache.spark.sql.SQLContext(sc) val schema = StructType( StructField("name", StringType, false) :: StructField("age", IntegerType, true) :: Nil) val people = sc.textFile("examples/src/main/resources/people.txt").map(_.split(",")).map(p => Row(p(0), p(1).trim.toInt)) val peopleSchemaRDD = sqlContext. applySchema(people, schema) peopleSchemaRDD.printSchema // root // |-- name: string (nullable = false) // |-- age: integer (nullable = true) peopleSchemaRDD.registerAsTable("people") sqlContext.sql("select name from people").collect.foreach(println) ``` I will add new contents to the SQL programming guide later. JIRA: https://issues.apache.org/jira/browse/SPARK-2179 Author: Yin Huai <huai@cse.ohio-state.edu> Closes #1346 from yhuai/dataTypeAndSchema and squashes the following commits: 1d45977 [Yin Huai] Clean up. a6e08b4 [Yin Huai] Merge remote-tracking branch 'upstream/master' into dataTypeAndSchema c712fbf [Yin Huai] Converts types of values based on defined schema. 4ceeb66 [Yin Huai] Merge remote-tracking branch 'upstream/master' into dataTypeAndSchema e5f8df5 [Yin Huai] Scaladoc. 122d1e7 [Yin Huai] Address comments. 03bfd95 [Yin Huai] Merge remote-tracking branch 'upstream/master' into dataTypeAndSchema 2476ed0 [Yin Huai] Minor updates. ab71f21 [Yin Huai] Format. fc2bed1 [Yin Huai] Merge remote-tracking branch 'upstream/master' into dataTypeAndSchema bd40a33 [Yin Huai] Address comments. 991f860 [Yin Huai] Move "asJavaDataType" and "asScalaDataType" to DataTypeConversions.scala. 1cb35fe [Yin Huai] Add "valueContainsNull" to MapType. 3edb3ae [Yin Huai] Python doc. 692c0b9 [Yin Huai] Merge remote-tracking branch 'upstream/master' into dataTypeAndSchema 1d93395 [Yin Huai] Python APIs. 246da96 [Yin Huai] Add java data type APIs to javadoc index. 1db9531 [Yin Huai] Merge remote-tracking branch 'upstream/master' into dataTypeAndSchema d48fc7b [Yin Huai] Minor updates. 33c4fec [Yin Huai] Merge remote-tracking branch 'upstream/master' into dataTypeAndSchema b9f3071 [Yin Huai] Java API for applySchema. 1c9f33c [Yin Huai] Java APIs for DataTypes and Row. 624765c [Yin Huai] Tests for applySchema. aa92e84 [Yin Huai] Update data type tests. 8da1a17 [Yin Huai] Add Row.fromSeq. 9c99bc0 [Yin Huai] Several minor updates. 1d9c13a [Yin Huai] Update applySchema API. 85e9b51 [Yin Huai] Merge remote-tracking branch 'upstream/master' into dataTypeAndSchema e495e4e [Yin Huai] More comments. 42d47a3 [Yin Huai] Merge remote-tracking branch 'upstream/master' into dataTypeAndSchema c3f4a02 [Yin Huai] Merge remote-tracking branch 'upstream/master' into dataTypeAndSchema 2e58dbd [Yin Huai] Merge remote-tracking branch 'upstream/master' into dataTypeAndSchema b8b7db4 [Yin Huai] 1. Move sql package object and package-info to sql-core. 2. Minor updates on APIs. 3. Update scala doc. 68525a2 [Yin Huai] Update JSON unit test. 3209108 [Yin Huai] Add unit tests. dcaf22f [Yin Huai] Add a field containsNull to ArrayType to indicate if an array can contain null values or not. If an ArrayType is constructed by "ArrayType(elementType)" (the existing constructor), the value of containsNull is false. 9168b83 [Yin Huai] Update comments. fc649d7 [Yin Huai] Merge remote-tracking branch 'upstream/master' into dataTypeAndSchema eca7d04 [Yin Huai] Add two apply methods which will be used to extract StructField(s) from a StructType. 949d6bb [Yin Huai] When creating a SchemaRDD for a JSON dataset, users can apply an existing schema. 7a6a7e5 [Yin Huai] Fix bug introduced by the change made on SQLContext.inferSchema. 43a45e1 [Yin Huai] Remove sql.util.package introduced in a previous commit. 0266761 [Yin Huai] Format 03eec4c [Yin Huai] Merge remote-tracking branch 'upstream/master' into dataTypeAndSchema 90460ac [Yin Huai] Infer the Catalyst data type from an object and cast a data value to the expected type. 3fa0df5 [Yin Huai] Provide easier ways to construct a StructType. 16be3e5 [Yin Huai] This commit contains three changes: * Expose `DataType`s in the sql package (internal details are private to sql). * Introduce `createSchemaRDD` to create a `SchemaRDD` from an `RDD` with a provided schema (represented by a `StructType`) and a provided function to construct `Row`, * Add a function `simpleString` to every `DataType`. Also, the schema represented by a `StructType` can be visualized by `printSchema`.
-
- Jul 29, 2014
-
-
Josh Rosen authored
Author: Josh Rosen <joshrosen@apache.org> Closes #1626 from JoshRosen/SPARK-2305 and squashes the following commits: 03fb283 [Josh Rosen] Update Py4J to version 0.8.2.1.
-
Davies Liu authored
Datetime and time in Python will be converted into java.util.Calendar after serialization, it will be converted into java.sql.Timestamp during inferSchema(). In javaToPython(), Timestamp will be converted into Calendar, then be converted into datetime in Python after pickling. Author: Davies Liu <davies.liu@gmail.com> Closes #1601 from davies/date and squashes the following commits: f0599b0 [Davies Liu] remove tests for sets and tuple in sql, fix list of list c9d607a [Davies Liu] convert datetype for runtime 709d40d [Davies Liu] remove brackets 96db384 [Davies Liu] support datetime type for SchemaRDD
-
Davies Liu authored
fix the problem with pickle operator.itemgetter with multiple index. Author: Davies Liu <davies.liu@gmail.com> Closes #1627 from davies/itemgetter and squashes the following commits: aabd7fa [Davies Liu] fix pickle itemgetter with cloudpickle
-
Davies Liu authored
During rdd.take(n), JVM will close the socket if it had got enough data, the Python worker should keep silent in this case. In the same time, the worker should not print the trackback into stderr if it send the traceback to JVM successfully. Author: Davies Liu <davies.liu@gmail.com> Closes #1625 from davies/error and squashes the following commits: 4fbcc6d [Davies Liu] disable log4j during testing when exception is expected. cc14202 [Davies Liu] keep silent in worker if JVM close the socket
-
- Jul 28, 2014
-
-
Josh Rosen authored
This addresses a PySpark issue where a failed attempt to construct SparkContext would prevent any future SparkContext creation. Author: Josh Rosen <joshrosen@apache.org> Closes #1606 from JoshRosen/SPARK-1550 and squashes the following commits: ec7fadc [Josh Rosen] [SPARK-1550] [PySpark] Allow SparkContext creation after failed attempts
-
- Jul 27, 2014
-
-
Doris Xin authored
Added a set of serializer/deserializer for Double in _common.py and PythonMLLibAPI in MLLib. Author: Doris Xin <doris.s.xin@gmail.com> Closes #1581 from dorx/doubleSerDe and squashes the following commits: 86a85b3 [Doris Xin] Merge branch 'master' into doubleSerDe 2bfe7a4 [Doris Xin] Removed magic byte ad4d0d9 [Doris Xin] removed a space in unit a9020bc [Doris Xin] units passed 7dad9af [Doris Xin] WIP
-
- Jul 26, 2014
-
-
Josh Rosen authored
Similar to SPARK-1034, the problem was that Py4J didn’t cope well with the fake ClassTags used in the Java API. It doesn’t look like there’s any reason why PythonRDD needs to take a ClassTag, since it just ignores the type of the previous RDD, so I removed the type parameter and we no longer pass ClassTags from Python. Author: Josh Rosen <joshrosen@apache.org> Closes #1605 from JoshRosen/spark-2601 and squashes the following commits: b68e118 [Josh Rosen] Fix Py4J error when transforming pickleFiles [SPARK-2601]
-
Davies Liu authored
Add several default configs for PySpark, related to serialization in JVM. spark.serializer = org.apache.spark.serializer.KryoSerializer spark.serializer.objectStreamReset = 100 spark.rdd.compress = True This will help to reduce the memory usage during RDD.partitionBy() Author: Davies Liu <davies.liu@gmail.com> Closes #1568 from davies/conf and squashes the following commits: cd316f1 [Davies Liu] remove duplicated line f71a355 [Davies Liu] rebase to master, add spark.rdd.compress = True 8f63f45 [Davies Liu] Merge branch 'master' into conf 8bc9f08 [Davies Liu] fix unittest c04a83d [Davies Liu] some default configs for PySpark
-
Josh Rosen authored
Author: Josh Rosen <joshrosen@apache.org> Closes #1596 from JoshRosen/spark-1458 and squashes the following commits: fdbb0bf [Josh Rosen] Add SparkContext.version to Python & Java [SPARK-1458]
-
- Jul 25, 2014
-
-
Doris Xin authored
exact sample size not supported for now. Author: Doris Xin <doris.s.xin@gmail.com> Closes #1554 from dorx/pystratified and squashes the following commits: 4ba927a [Doris Xin] use rel diff (+- 50%) instead of abs diff (+- 50) bdc3f8b [Doris Xin] updated unit to check sample holistically 7713c7b [Doris Xin] Python version of stratified sampling
-
Davies Liu authored
During aggregation in Python worker, if the memory usage is above spark.executor.memory, it will do disk spilling aggregation. It will split the aggregation into multiple stage, in each stage, it will partition the aggregated data by hash and dump them into disks. After all the data are aggregated, it will merge all the stages together (partition by partition). Author: Davies Liu <davies.liu@gmail.com> Closes #1460 from davies/spill and squashes the following commits: cad91bf [Davies Liu] call gc.collect() after data.clear() to release memory as much as possible. 37d71f7 [Davies Liu] balance the partitions 902f036 [Davies Liu] add shuffle.py into run-tests dcf03a9 [Davies Liu] fix memory_info() of psutil 67e6eba [Davies Liu] comment for MAX_TOTAL_PARTITIONS f6bd5d6 [Davies Liu] rollback next_limit() again, the performance difference is huge: e74b785 [Davies Liu] fix code style and change next_limit to memory_limit 400be01 [Davies Liu] address all the comments 6178844 [Davies Liu] refactor and improve docs fdd0a49 [Davies Liu] add long doc string for ExternalMerger 1a97ce4 [Davies Liu] limit used memory and size of objects in partitionBy() e6cc7f9 [Davies Liu] Merge branch 'master' into spill 3652583 [Davies Liu] address comments e78a0a0 [Davies Liu] fix style 24cec6a [Davies Liu] get local directory by SPARK_LOCAL_DIR 57ee7ef [Davies Liu] update docs 286aaff [Davies Liu] let spilled aggregation in Python configurable e9a40f6 [Davies Liu] recursive merger 6edbd1f [Davies Liu] Hash based disk spilling aggregation
-
- Jul 24, 2014
-
-
Prashant Sharma authored
Author: Prashant Sharma <prashant.s@imaginea.com> Closes #1051 from ScrapCodes/SPARK-2014/pyspark-cache and squashes the following commits: f192df7 [Prashant Sharma] Code Review 2a2f43f [Prashant Sharma] [SPARK-2014] Make PySpark store RDDs in MEMORY_ONLY_SER with compression by default
-
- Jul 22, 2014
-
-
Nicholas Chammas authored
This pull request aims to resolve all outstanding PEP8 violations in PySpark. Author: Nicholas Chammas <nicholas.chammas@gmail.com> Author: nchammas <nicholas.chammas@gmail.com> Closes #1505 from nchammas/master and squashes the following commits: 98171af [Nicholas Chammas] [SPARK-2470] revert PEP 8 fixes to cloudpickle cba7768 [Nicholas Chammas] [SPARK-2470] wrap expression list in parentheses e178dbe [Nicholas Chammas] [SPARK-2470] style - change position of line break 9127d2b [Nicholas Chammas] [SPARK-2470] wrap expression lists in parentheses 22132a4 [Nicholas Chammas] [SPARK-2470] wrap conditionals in parentheses 24639bc [Nicholas Chammas] [SPARK-2470] fix whitespace for doctest 7d557b7 [Nicholas Chammas] [SPARK-2470] PEP8 fixes to tests.py 8f8e4c0 [Nicholas Chammas] [SPARK-2470] PEP8 fixes to storagelevel.py b3b96cf [Nicholas Chammas] [SPARK-2470] PEP8 fixes to statcounter.py d644477 [Nicholas Chammas] [SPARK-2470] PEP8 fixes to worker.py aa3a7b6 [Nicholas Chammas] [SPARK-2470] PEP8 fixes to sql.py 1916859 [Nicholas Chammas] [SPARK-2470] PEP8 fixes to shell.py 95d1d95 [Nicholas Chammas] [SPARK-2470] PEP8 fixes to serializers.py a0fec2e [Nicholas Chammas] [SPARK-2470] PEP8 fixes to mllib c85e1e5 [Nicholas Chammas] [SPARK-2470] PEP8 fixes to join.py d14f2f1 [Nicholas Chammas] [SPARK-2470] PEP8 fixes to __init__.py 81fcb20 [Nicholas Chammas] [SPARK-2470] PEP8 fixes to resultiterable.py 1bde265 [Nicholas Chammas] [SPARK-2470] PEP8 fixes to java_gateway.py 7fc849c [Nicholas Chammas] [SPARK-2470] PEP8 fixes to daemon.py ca2d28b [Nicholas Chammas] [SPARK-2470] PEP8 fixes to context.py f4e0039 [Nicholas Chammas] [SPARK-2470] PEP8 fixes to conf.py a6d5e4b [Nicholas Chammas] [SPARK-2470] PEP8 fixes to cloudpickle.py f0a7ebf [Nicholas Chammas] [SPARK-2470] PEP8 fixes to rddsampler.py 4dd148f [nchammas] Merge pull request #5 from apache/master f7e4581 [Nicholas Chammas] unrelated pep8 fix a36eed0 [Nicholas Chammas] name ec2 instances and security groups consistently de7292a [nchammas] Merge pull request #4 from apache/master 2e4fe00 [nchammas] Merge pull request #3 from apache/master 89fde08 [nchammas] Merge pull request #2 from apache/master 69f6e22 [Nicholas Chammas] PEP8 fixes 2627247 [Nicholas Chammas] broke up lines before they hit 100 chars 6544b7e [Nicholas Chammas] [SPARK-2065] give launched instances names 69da6cf [nchammas] Merge pull request #1 from apache/master
-
- Jul 21, 2014
-
-
Davies Liu authored
In CPython, hash of None is different cross machines, it will cause wrong result during shuffle. This PR will fix this. Author: Davies Liu <davies.liu@gmail.com> Closes #1371 from davies/hash_of_none and squashes the following commits: d01745f [Davies Liu] add comments, remove outdated unit tests 5467141 [Davies Liu] disable hijack of hash, use it only for partitionBy() b7118aa [Davies Liu] use __builtin__ instead of __builtins__ 839e417 [Davies Liu] hijack hash to make hash of None consistant cross machines
-
- Jul 20, 2014
-
-
Xiangrui Meng authored
to avoid overflow in `exp(x)` if `x` is large. Author: Xiangrui Meng <meng@databricks.com> Closes #1493 from mengxr/py-logistic and squashes the following commits: 259e863 [Xiangrui Meng] stabilize logistic function in pyspark
-