- Sep 28, 2015
-
-
Sean Owen authored
In the course of https://issues.apache.org/jira/browse/LEGAL-226 it came to light that the guidance at http://www.apache.org/dev/licensing-howto.html#permissive-deps means that permissively-licensed dependencies has a different interpretation than we (er, I) had been operating under. "pointer ... to the license within the source tree" specifically means a copy of the license within Spark's distribution, whereas at the moment, Spark's LICENSE has a pointer to the project's license in the other project's source tree. The remedy is simply to inline all such license references (i.e. BSD/MIT licenses) or include their text in "licenses" subdirectory and point to that. Along the way, we can also treat other BSD/MIT licenses, whose text has been inlined into LICENSE, in the same way. The LICENSE file can continue to provide a helpful list of BSD/MIT licensed projects and a pointer to their sites. This would be over and above including license text in the distro, which is the essential thing. Author: Sean Owen <sowen@cloudera.com> Closes #8919 from srowen/SPARK-10833.
-
Davies Liu authored
The UTF8String may come from UnsafeRow, then underline buffer of it is not copied, so we should clone it in order to hold it in Stats. cc yhuai Author: Davies Liu <davies@databricks.com> Closes #8929 from davies/pushdown_string.
-
Cheng Lian authored
Please refer to [SPARK-10395] [1] for details. [1]: https://issues.apache.org/jira/browse/SPARK-10395 Author: Cheng Lian <lian@databricks.com> Closes #8553 from liancheng/spark-10395/simplify-parquet-read-support.
-
jerryshao authored
This bug is introduced in [SPARK-9092](https://issues.apache.org/jira/browse/SPARK-9092), `targetExecutorNumber` should use `minExecutors` if `initialExecutors` is not set. Using 0 instead will meet the problem as mentioned in [SPARK-10790](https://issues.apache.org/jira/browse/SPARK-10790). Also consolidate and simplify some similar code snippets to keep the consistent semantics. Author: jerryshao <sshao@hortonworks.com> Closes #8910 from jerryshao/SPARK-10790.
-
Holden Karau authored
While this is likely not a huge issue for real production systems, for test systems which may setup a Spark Context and tear it down and stand up a Spark Context with a different master (e.g. some local mode & some yarn mode) tests this cane be an issue. Discovered during work on spark-testing-base on Spark 1.4.1, but seems like the logic that triggers it is present in master (see SparkHadoopUtil object). A valid work around for users encountering this issue is to fork a different JVM, however this can be heavy weight. ``` [info] SampleMiniClusterTest: [info] Exception encountered when attempting to run a suite with class name: com.holdenkarau.spark.testing.SampleMiniClusterTest *** ABORTED *** [info] java.lang.ClassCastException: org.apache.spark.deploy.SparkHadoopUtil cannot be cast to org.apache.spark.deploy.yarn.YarnSparkHadoopUtil [info] at org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$.get(YarnSparkHadoopUtil.scala:163) [info] at org.apache.spark.deploy.yarn.Client.prepareLocalResources(Client.scala:257) [info] at org.apache.spark.deploy.yarn.Client.createContainerLaunchContext(Client.scala:561) [info] at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:115) [info] at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:57) [info] at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:141) [info] at org.apache.spark.SparkContext.<init>(SparkContext.scala:497) [info] at com.holdenkarau.spark.testing.SharedMiniCluster$class.setup(SharedMiniCluster.scala:186) [info] at com.holdenkarau.spark.testing.SampleMiniClusterTest.setup(SampleMiniClusterTest.scala:26) [info] at com.holdenkarau.spark.testing.SharedMiniCluster$class.beforeAll(SharedMiniCluster.scala:103) ``` Author: Holden Karau <holden@pigscanfly.ca> Closes #8911 from holdenk/SPARK-10812-spark-hadoop-util-support-switching-to-yarn.
-
David Martin authored
seperate -> separate sees -> see Author: David Martin <dmartinpro@users.noreply.github.com> Closes #8928 from dmartinpro/patch-1.
-
- Sep 27, 2015
-
-
Bin Wang authored
Author: Bin Wang <wbin00@gmail.com> Closes #8898 from wb14123/doc.
-
Holden Karau authored
Similar to SPARK-10630 it would be nice if Java users didn't have to parallelize there data explicitly (as Scala users already can skip). Issue came up in http://stackoverflow.com/questions/32613413/apache-spark-machine-learning-cant-get-estimator-example-to-work Author: Holden Karau <holden@pigscanfly.ca> Closes #8879 from holdenk/SPARK-10720-add-a-java-wrapper-to-create-a-dataframe-from-a-local-list-of-java-beans.
-
Wenchen Fan authored
https://issues.apache.org/jira/browse/SPARK-10741 I choose the second approach: do not change output exprIds when convert MetastoreRelation to LogicalRelation Author: Wenchen Fan <cloud0fan@163.com> Closes #8889 from cloud-fan/hot-bug.
-
y-shimizu authored
I implemented toString for AssociationRules.Rule, format like `[x, y] => {z}: 1.0` Author: y-shimizu <y.shimizu0429@gmail.com> Closes #8904 from y-shimizu/master.
-
- Sep 26, 2015
-
-
Cheng Lian authored
When refactoring SQL options from plain strings to the strongly typed `SQLConfEntry`, `spark.sql.hive.version` wasn't migrated, and doesn't show up in the result of `SET -v`, as `SET -v` only shows public `SQLConfEntry` instances. This affects compatibility with Simba ODBC driver. This PR migrates this SQL option as a `SQLConfEntry` to fix this issue. Author: Cheng Lian <lian@databricks.com> Closes #8925 from liancheng/spark-10845/hive-version-conf.
-
- Sep 25, 2015
-
-
Narine Kokhlikyan authored
Hi everyone, Since the family argument is required for the glm function, the execution of: model <- glm(Sepal_Length ~ Sepal_Width, df) is failing. I've fixed the documentation by adding the family argument and also added the summay(model) which will show the coefficients for the model. Thanks, Narine Author: Narine Kokhlikyan <narine.kokhlikyan@gmail.com> Closes #8870 from NarineK/sparkrml.
-
Eric Liang authored
This integrates the Interaction feature transformer with SparkR R formula support (i.e. support `:`). To generate reasonable ML attribute names for feature interactions, it was necessary to add the ability to read attribute the original attribute names back from `StructField`, and also to specify custom group prefixes in `VectorAssembler`. This also has the side-benefit of cleaning up the double-underscores in the attributes generated for non-interaction terms. mengxr Author: Eric Liang <ekl@databricks.com> Closes #8830 from ericl/interaction-2.
-
- Sep 24, 2015
-
-
Matei Zaharia authored
This makes two changes: - Allow reduce tasks to fetch multiple map output partitions -- this is a pretty small change to HashShuffleFetcher - Move shuffle locality computation out of DAGScheduler and into ShuffledRDD / MapOutputTracker; this was needed because the code in DAGScheduler wouldn't work for RDDs that fetch multiple map output partitions from each reduce task I also added an AdaptiveSchedulingSuite that creates RDDs depending on multiple map output partitions. Author: Matei Zaharia <matei@databricks.com> Closes #8844 from mateiz/spark-9852.
-
Josh Rosen authored
The DiskBlockObjectWriter constructor took a BlockId parameter but never used it. As part of some general cleanup in these interfaces, this patch refactors its constructor to eliminate this parameter. Author: Josh Rosen <joshrosen@databricks.com> Closes #8871 from JoshRosen/disk-block-object-writer-blockid-cleanup.
-
Liang-Chi Hsieh authored
JIRA: https://issues.apache.org/jira/browse/SPARK-10705 As described in the JIRA ticket, `DataFrame.toJSON` uses `DataFrame.mapPartitions`, which converts internal rows to external rows. We should use `queryExecution.toRdd.mapPartitions` that directly uses internal rows for better performance. Author: Liang-Chi Hsieh <viirya@appier.com> Closes #8865 from viirya/df-tojson-internalrow.
-
Wenchen Fan authored
Author: Wenchen Fan <cloud0fan@163.com> Closes #8874 from cloud-fan/hive-agg.
-
Xiangrui Meng authored
This reverts commit 084e4e12.
-
Holden Karau authored
[SPARK-10763] [ML] [JAVA] [TEST] Update Java MLLIB/ML tests to use simplified dataframe construction As introduced in https://issues.apache.org/jira/browse/SPARK-10630 we now have an easier way to create dataframes from local Java lists. Lets update the tests to use those. Author: Holden Karau <holden@pigscanfly.ca> Closes #8886 from holdenk/SPARK-10763-update-java-mllib-ml-tests-to-use-simplified-dataframe-construction.
-
- Sep 23, 2015
-
-
zsxwing authored
[SPARK-10692] [STREAMING] Expose failureReasons in BatchInfo for streaming UI to clear failed batches Slightly modified version of #8818, all credit goes to zsxwing Author: zsxwing <zsxwing@gmail.com> Author: Tathagata Das <tathagata.das1565@gmail.com> Closes #8892 from tdas/SPARK-10692.
-
Andrew Or authored
This patch reverts most of the changes in a previous fix #8827. The real cause of the issue is that in `TungstenAggregate`'s prepare method we only reserve 1 page, but later when we switch to sort-based aggregation we try to acquire 1 page AND a pointer array. The longer-term fix should be to reserve also the pointer array, but for now ***we will simply not track the pointer array***. (Note that elsewhere we already don't track the pointer array, e.g. [here](https://github.com/apache/spark/blob/a18208047f06a4244703c17023bb20cbe1f59d73/sql/core/src/main/java/org/apache/spark/sql/execution/UnsafeKVExternalSorter.java#L88)) Note: This patch reuses the unit test added in #8827 so it doesn't show up in the diff. Author: Andrew Or <andrew@databricks.com> Closes #8888 from andrewor14/dont-track-pointer-array.
-
zsxwing authored
Design doc: https://docs.google.com/document/d/1CF5G6rGVQMKSyV_QKo4D2M-x6rxz5x1Ew7aK3Uq6u8c/edit?usp=sharing Author: zsxwing <zsxwing@gmail.com> Closes #6457 from zsxwing/new-rpc.
-
Reynold Xin authored
Python DataFrame.head/take now requires scanning all the partitions. This pull request changes them to delegate the actual implementation to Scala DataFrame (by calling DataFrame.take). This is more of a hack for fixing this issue in 1.5.1. A more proper fix is to change executeCollect and executeTake to return InternalRow rather than Row, and thus eliminate the extra round-trip conversion. Author: Reynold Xin <rxin@databricks.com> Closes #8876 from rxin/SPARK-10731.
-
Yanbo Liang authored
Currently use can set ```checkpointInterval``` to specify how often should the cache be check-pointed. But we also need the function that users can disable it. This PR supports that users can disable checkpoint if user setting ```checkpointInterval = -1```. We also add documents for GBT ```cacheNodeIds``` to make users can understand more clearly about checkpoint. Author: Yanbo Liang <ybliang8@gmail.com> Closes #8820 from yanboliang/spark-10699.
-
Yanbo Liang authored
By default ```quantilesCol``` should be empty. If ```quantileProbabilities``` is set, we should append quantiles as a new column (of type Vector). Author: Yanbo Liang <ybliang8@gmail.com> Closes #8836 from yanboliang/spark-10686.
-
sethah authored
All prediction models should store `numFeatures` indicating the number of features the model was trained on. Default value of -1 added for backwards compatibility. Author: sethah <seth.hendrickson16@gmail.com> Closes #8675 from sethah/SPARK-9715.
-
Josh Rosen authored
This patch attempts to fix an issue where Spark SQL's UnsafeRowSerializer was incompatible with the `tungsten-sort` ShuffleManager. Author: Josh Rosen <joshrosen@databricks.com> Closes #8873 from JoshRosen/SPARK-10403.
-
tedyu authored
Author: tedyu <yuzhihong@gmail.com> Closes #8843 from tedyu/master.
-
zsxwing authored
Fixed the following failure in https://amplab.cs.berkeley.edu/jenkins/job/NewSparkPullRequestBuilder/1787/testReport/junit/org.apache.spark.streaming/CheckpointSuite/recovery_maintains_rate_controller/ ``` sbt.ForkMain$ForkError: The code passed to eventually never returned normally. Attempted 660 times over 10.000044392000001 seconds. Last failure message: 9223372036854775807 did not equal 200. at org.scalatest.concurrent.Eventually$class.tryTryAgain$1(Eventually.scala:420) at org.scalatest.concurrent.Eventually$class.eventually(Eventually.scala:438) at org.scalatest.concurrent.Eventually$.eventually(Eventually.scala:478) at org.scalatest.concurrent.Eventually$class.eventually(Eventually.scala:336) at org.scalatest.concurrent.Eventually$.eventually(Eventually.scala:478) at org.apache.spark.streaming.CheckpointSuite$$anonfun$15.apply$mcV$sp(CheckpointSuite.scala:413) at org.apache.spark.streaming.CheckpointSuite$$anonfun$15.apply(CheckpointSuite.scala:396) at org.apache.spark.streaming.CheckpointSuite$$anonfun$15.apply(CheckpointSuite.scala:396) at org.scalatest.Transformer$$anonfun$apply$1.apply$mcV$sp(Transformer.scala:22) at org.scalatest.OutcomeOf$class.outcomeOf(OutcomeOf.scala:85) at org.scalatest.OutcomeOf$.outcomeOf(OutcomeOf.scala:104) at org.scalatest.Transformer.apply(Transformer.scala:22) ``` In this test, it calls `advanceTimeWithRealDelay(ssc, 2)` to run two batch jobs. However, one race condition is these two jobs can finish before the receiver is registered. Then `UpdateRateLimit` won't be sent to the receiver and `getDefaultBlockGeneratorRateLimit` cannot be updated. Here are the logs related to this issue: ``` 15/09/22 19:28:26.154 pool-1-thread-1-ScalaTest-running-CheckpointSuite INFO CheckpointSuite: Manual clock before advancing = 2500 15/09/22 19:28:26.869 JobScheduler INFO JobScheduler: Finished job streaming job 3000 ms.0 from job set of time 3000 ms 15/09/22 19:28:26.869 JobScheduler INFO JobScheduler: Total delay: 1442975303.869 s for time 3000 ms (execution: 0.711 s) 15/09/22 19:28:26.873 JobScheduler INFO JobScheduler: Finished job streaming job 3500 ms.0 from job set of time 3500 ms 15/09/22 19:28:26.873 JobScheduler INFO JobScheduler: Total delay: 1442975303.373 s for time 3500 ms (execution: 0.004 s) 15/09/22 19:28:26.879 sparkDriver-akka.actor.default-dispatcher-3 INFO ReceiverTracker: Registered receiver for stream 0 from localhost:57749 15/09/22 19:28:27.154 pool-1-thread-1-ScalaTest-running-CheckpointSuite INFO CheckpointSuite: Manual clock after advancing = 3500 ``` `advanceTimeWithRealDelay(ssc, 2)` triggered job 3000ms and 3500ms but the receiver was registered after job 3000ms and 3500ms finished. So we should make sure the receiver online before running `advanceTimeWithRealDelay(ssc, 2)`. Author: zsxwing <zsxwing@gmail.com> Closes #8877 from zsxwing/SPARK-10769.
-
zsxwing authored
[SPARK-10224] [STREAMING] Fix the issue that blockIntervalTimer won't call updateCurrentBuffer when stopping `blockIntervalTimer.stop(interruptTimer = false)` doesn't guarantee calling `updateCurrentBuffer`. So it's possible that `blockIntervalTimer` will exit when `updateCurrentBuffer` is not empty. Then the data in `currentBuffer` will be lost. To reproduce it, you can add `Thread.sleep(200)` in this line (https://github.com/apache/spark/blob/69c9c177160e32a2fbc9b36ecc52156077fca6fc/streaming/src/main/scala/org/apache/spark/streaming/util/RecurringTimer.scala#L100) and run `StreamingContexSuite`. I cannot write a unit test to reproduce it because I cannot find an approach to force `RecurringTimer` suspend at this line for a few milliseconds. There was a failure in Jenkins here: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/41455/console This PR updates RecurringTimer to make sure `stop(interruptTimer = false)` will call `callback` at least once after the `stop` method is called. Author: zsxwing <zsxwing@gmail.com> Closes #8417 from zsxwing/SPARK-10224.
-
Tathagata Das authored
Here is the screenshot after adding the job descriptions to threads that run receivers and the scheduler thread running the batch jobs. ## All jobs page * Added job descriptions with links to relevant batch details page  ## All stages page * Added stage descriptions with links to relevant batch details page  ## Streaming batch details page * Added the +details link  Author: Tathagata Das <tathagata.das1565@gmail.com> Closes #8791 from tdas/SPARK-10652.
-
- Sep 22, 2015
-
-
Matt Hagen authored
The Scala example under the "Example: Pipeline" heading in this document initializes the "test" variable to a DataFrame. Because test is already a DF, there is not need to call test.toDF as the example does in a subsequent line: model.transform(test.toDF). So, I removed the extraneous toDF invocation. Author: Matt Hagen <anonz3000@gmail.com> Closes #8875 from hagenhaus/SPARK-10663.
-
Zhichao Li authored
**Please attribute this PR to `Zhichao Li <zhichao.liintel.com>`.** This PR is based on PR #8476 authored by zhichao-li. It fixes SPARK-10310 by adding field delimiter SerDe property to the default `LazySimpleSerDe`, and enabling default record reader/writer classes. Currently, we only support `LazySimpleSerDe`, used together with `TextRecordReader` and `TextRecordWriter`, and don't support customizing record reader/writer using `RECORDREADER`/`RECORDWRITER` clauses. This should be addressed in separate PR(s). Author: Cheng Lian <lian@databricks.com> Closes #8860 from liancheng/spark-10310/fix-script-trans-delimiters.
-
Andrew Or authored
... simply because the code is missing! Author: Andrew Or <andrew@databricks.com> Closes #8828 from andrewor14/task-end-reason-json.
-
Reynold Xin authored
This patch refactors Python UDF handling: 1. Extract the per-partition Python UDF calling logic from PythonRDD into a PythonRunner. PythonRunner itself expects iterator as input/output, and thus has no dependency on RDD. This way, we can use PythonRunner directly in a mapPartitions call, or in the future in an environment without RDDs. 2. Use PythonRunner in Spark SQL's BatchPythonEvaluation. 3. Updated BatchPythonEvaluation to only use its input once, rather than twice. This should fix Python UDF performance regression in Spark 1.5. There are a number of small cleanups I wanted to do when I looked at the code, but I kept most of those out so the diff looks small. This basically implements the approach in https://github.com/apache/spark/pull/8833, but with some code moving around so the correctness doesn't depend on the inner workings of Spark serialization and task execution. Author: Reynold Xin <rxin@databricks.com> Closes #8835 from rxin/python-iter-refactor.
-
Yin Huai authored
https://issues.apache.org/jira/browse/SPARK-10737 Author: Yin Huai <yhuai@databricks.com> Closes #8854 from yhuai/SMJBug.
-
Yin Huai authored
[SPARK-10672] [SQL] Do not fail when we cannot save the metadata of a data source table in a hive compatible way https://issues.apache.org/jira/browse/SPARK-10672 With changes in this PR, we will fallback to same the metadata of a table in Spark SQL specific way if we fail to save it in a hive compatible way (Hive throws an exception because of its internal restrictions, e.g. binary and decimal types cannot be saved to parquet if the metastore is running Hive 0.13). I manually tested the fix with the following test in `DataSourceWithHiveMetastoreCatalogSuite` (`spark.sql.hive.metastore.version=0.13` and `spark.sql.hive.metastore.jars`=`maven`). ``` test(s"fail to save metadata of a parquet table in hive 0.13") { withTempPath { dir => withTable("t") { val path = dir.getCanonicalPath sql( s"""CREATE TABLE t USING $provider |OPTIONS (path '$path') |AS SELECT 1 AS d1, cast("val_1" as binary) AS d2 """.stripMargin) sql( s"""describe formatted t """.stripMargin).collect.foreach(println) sqlContext.table("t").show } } } } ``` Without this fix, we will fail with the following error. ``` org.apache.hadoop.hive.ql.metadata.HiveException: java.lang.UnsupportedOperationException: Unknown field type: binary at org.apache.hadoop.hive.ql.metadata.Hive.createTable(Hive.java:619) at org.apache.hadoop.hive.ql.metadata.Hive.createTable(Hive.java:576) at org.apache.spark.sql.hive.client.ClientWrapper$$anonfun$createTable$1.apply$mcV$sp(ClientWrapper.scala:359) at org.apache.spark.sql.hive.client.ClientWrapper$$anonfun$createTable$1.apply(ClientWrapper.scala:357) at org.apache.spark.sql.hive.client.ClientWrapper$$anonfun$createTable$1.apply(ClientWrapper.scala:357) at org.apache.spark.sql.hive.client.ClientWrapper$$anonfun$withHiveState$1.apply(ClientWrapper.scala:256) at org.apache.spark.sql.hive.client.ClientWrapper.retryLocked(ClientWrapper.scala:211) at org.apache.spark.sql.hive.client.ClientWrapper.withHiveState(ClientWrapper.scala:248) at org.apache.spark.sql.hive.client.ClientWrapper.createTable(ClientWrapper.scala:357) at org.apache.spark.sql.hive.HiveMetastoreCatalog.createDataSourceTable(HiveMetastoreCatalog.scala:358) at org.apache.spark.sql.hive.execution.CreateMetastoreDataSourceAsSelect.run(commands.scala:285) at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:57) at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:57) at org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:69) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:140) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:138) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:138) at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:58) at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:58) at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:144) at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:129) at org.apache.spark.sql.DataFrame$.apply(DataFrame.scala:51) at org.apache.spark.sql.SQLContext.sql(SQLContext.scala:725) at org.apache.spark.sql.test.SQLTestUtils$$anonfun$sql$1.apply(SQLTestUtils.scala:56) at org.apache.spark.sql.test.SQLTestUtils$$anonfun$sql$1.apply(SQLTestUtils.scala:56) at org.apache.spark.sql.hive.DataSourceWithHiveMetastoreCatalogSuite$$anonfun$4$$anonfun$apply$1$$anonfun$apply$mcV$sp$2$$anonfun$apply$2.apply$mcV$sp(HiveMetastoreCatalogSuite.scala:165) at org.apache.spark.sql.test.SQLTestUtils$class.withTable(SQLTestUtils.scala:150) at org.apache.spark.sql.hive.DataSourceWithHiveMetastoreCatalogSuite.withTable(HiveMetastoreCatalogSuite.scala:52) at org.apache.spark.sql.hive.DataSourceWithHiveMetastoreCatalogSuite$$anonfun$4$$anonfun$apply$1$$anonfun$apply$mcV$sp$2.apply(HiveMetastoreCatalogSuite.scala:162) at org.apache.spark.sql.hive.DataSourceWithHiveMetastoreCatalogSuite$$anonfun$4$$anonfun$apply$1$$anonfun$apply$mcV$sp$2.apply(HiveMetastoreCatalogSuite.scala:161) at org.apache.spark.sql.test.SQLTestUtils$class.withTempPath(SQLTestUtils.scala:125) at org.apache.spark.sql.hive.DataSourceWithHiveMetastoreCatalogSuite.withTempPath(HiveMetastoreCatalogSuite.scala:52) at org.apache.spark.sql.hive.DataSourceWithHiveMetastoreCatalogSuite$$anonfun$4$$anonfun$apply$1.apply$mcV$sp(HiveMetastoreCatalogSuite.scala:161) at org.apache.spark.sql.hive.DataSourceWithHiveMetastoreCatalogSuite$$anonfun$4$$anonfun$apply$1.apply(HiveMetastoreCatalogSuite.scala:161) at org.apache.spark.sql.hive.DataSourceWithHiveMetastoreCatalogSuite$$anonfun$4$$anonfun$apply$1.apply(HiveMetastoreCatalogSuite.scala:161) at org.scalatest.Transformer$$anonfun$apply$1.apply$mcV$sp(Transformer.scala:22) at org.scalatest.OutcomeOf$class.outcomeOf(OutcomeOf.scala:85) at org.scalatest.OutcomeOf$.outcomeOf(OutcomeOf.scala:104) at org.scalatest.Transformer.apply(Transformer.scala:22) at org.scalatest.Transformer.apply(Transformer.scala:20) at org.scalatest.FunSuiteLike$$anon$1.apply(FunSuiteLike.scala:166) at org.apache.spark.SparkFunSuite.withFixture(SparkFunSuite.scala:42) at org.scalatest.FunSuiteLike$class.invokeWithFixture$1(FunSuiteLike.scala:163) at org.scalatest.FunSuiteLike$$anonfun$runTest$1.apply(FunSuiteLike.scala:175) at org.scalatest.FunSuiteLike$$anonfun$runTest$1.apply(FunSuiteLike.scala:175) at org.scalatest.SuperEngine.runTestImpl(Engine.scala:306) at org.scalatest.FunSuiteLike$class.runTest(FunSuiteLike.scala:175) at org.scalatest.FunSuite.runTest(FunSuite.scala:1555) at org.scalatest.FunSuiteLike$$anonfun$runTests$1.apply(FunSuiteLike.scala:208) at org.scalatest.FunSuiteLike$$anonfun$runTests$1.apply(FunSuiteLike.scala:208) at org.scalatest.SuperEngine$$anonfun$traverseSubNodes$1$1.apply(Engine.scala:413) at org.scalatest.SuperEngine$$anonfun$traverseSubNodes$1$1.apply(Engine.scala:401) at scala.collection.immutable.List.foreach(List.scala:318) at org.scalatest.SuperEngine.traverseSubNodes$1(Engine.scala:401) at org.scalatest.SuperEngine.org$scalatest$SuperEngine$$runTestsInBranch(Engine.scala:396) at org.scalatest.SuperEngine.runTestsImpl(Engine.scala:483) at org.scalatest.FunSuiteLike$class.runTests(FunSuiteLike.scala:208) at org.scalatest.FunSuite.runTests(FunSuite.scala:1555) at org.scalatest.Suite$class.run(Suite.scala:1424) at org.scalatest.FunSuite.org$scalatest$FunSuiteLike$$super$run(FunSuite.scala:1555) at org.scalatest.FunSuiteLike$$anonfun$run$1.apply(FunSuiteLike.scala:212) at org.scalatest.FunSuiteLike$$anonfun$run$1.apply(FunSuiteLike.scala:212) at org.scalatest.SuperEngine.runImpl(Engine.scala:545) at org.scalatest.FunSuiteLike$class.run(FunSuiteLike.scala:212) at org.apache.spark.sql.hive.DataSourceWithHiveMetastoreCatalogSuite.org$scalatest$BeforeAndAfterAll$$super$run(HiveMetastoreCatalogSuite.scala:52) at org.scalatest.BeforeAndAfterAll$class.liftedTree1$1(BeforeAndAfterAll.scala:257) at org.scalatest.BeforeAndAfterAll$class.run(BeforeAndAfterAll.scala:256) at org.apache.spark.sql.hive.DataSourceWithHiveMetastoreCatalogSuite.run(HiveMetastoreCatalogSuite.scala:52) at org.scalatest.tools.Framework.org$scalatest$tools$Framework$$runSuite(Framework.scala:462) at org.scalatest.tools.Framework$ScalaTestTask.execute(Framework.scala:671) at sbt.ForkMain$Run$2.call(ForkMain.java:294) at sbt.ForkMain$Run$2.call(ForkMain.java:284) at java.util.concurrent.FutureTask.run(FutureTask.java:262) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) Caused by: java.lang.UnsupportedOperationException: Unknown field type: binary at org.apache.hadoop.hive.ql.io.parquet.serde.ArrayWritableObjectInspector.getObjectInspector(ArrayWritableObjectInspector.java:108) at org.apache.hadoop.hive.ql.io.parquet.serde.ArrayWritableObjectInspector.<init>(ArrayWritableObjectInspector.java:60) at org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe.initialize(ParquetHiveSerDe.java:113) at org.apache.hadoop.hive.metastore.MetaStoreUtils.getDeserializer(MetaStoreUtils.java:339) at org.apache.hadoop.hive.ql.metadata.Table.getDeserializerFromMetaStore(Table.java:288) at org.apache.hadoop.hive.ql.metadata.Table.checkValidity(Table.java:194) at org.apache.hadoop.hive.ql.metadata.Hive.createTable(Hive.java:597) ... 76 more ``` Author: Yin Huai <yhuai@databricks.com> Closes #8824 from yhuai/datasourceMetadata.
-
Wenchen Fan authored
https://issues.apache.org/jira/browse/SPARK-10740 Author: Wenchen Fan <cloud0fan@163.com> Closes #8858 from cloud-fan/non-deter.
-
Josh Rosen authored
The current shuffle code has an interface named ShuffleReader with only one implementation, HashShuffleReader. This naming is confusing, since the same read path code is used for both sort- and hash-based shuffle. This patch addresses this by renaming HashShuffleReader to BlockStoreShuffleReader. Author: Josh Rosen <joshrosen@databricks.com> Closes #8825 from JoshRosen/shuffle-reader-cleanup.
-
Davies Liu authored
The output of Generate should not be resolved as Reference. Author: Davies Liu <davies@databricks.com> Closes #8755 from davies/view.
-