Skip to content
Snippets Groups Projects
Commit fe15ea97 authored by Sean Owen's avatar Sean Owen
Browse files

SPARK-6480 [CORE] histogram() bucket function is wrong in some simple edge cases

Fix fastBucketFunction for histogram() to handle edge conditions more correctly. Add a test, and fix existing one accordingly

Author: Sean Owen <sowen@cloudera.com>

Closes #5148 from srowen/SPARK-6480 and squashes the following commits:

974a0a0 [Sean Owen] Additional test of huge ranges, and a few more comments (and comment fixes)
23ec01e [Sean Owen] Fix fastBucketFunction for histogram() to handle edge conditions more correctly. Add a test, and fix existing one accordingly
parent 3ddb975f
No related branches found
No related tags found
No related merge requests found
......@@ -191,25 +191,23 @@ class DoubleRDDFunctions(self: RDD[Double]) extends Logging with Serializable {
}
}
// Determine the bucket function in constant time. Requires that buckets are evenly spaced
def fastBucketFunction(min: Double, increment: Double, count: Int)(e: Double): Option[Int] = {
def fastBucketFunction(min: Double, max: Double, count: Int)(e: Double): Option[Int] = {
// If our input is not a number unless the increment is also NaN then we fail fast
if (e.isNaN()) {
return None
}
val bucketNumber = (e - min)/(increment)
// We do this rather than buckets.lengthCompare(bucketNumber)
// because Array[Double] fails to override it (for now).
if (bucketNumber > count || bucketNumber < 0) {
if (e.isNaN || e < min || e > max) {
None
} else {
Some(bucketNumber.toInt.min(count - 1))
// Compute ratio of e's distance along range to total range first, for better precision
val bucketNumber = (((e - min) / (max - min)) * count).toInt
// should be less than count, but will equal count if e == max, in which case
// it's part of the last end-range-inclusive bucket, so return count-1
Some(math.min(bucketNumber, count - 1))
}
}
// Decide which bucket function to pass to histogramPartition. We decide here
// rather than having a general function so that the decission need only be made
// rather than having a general function so that the decision need only be made
// once rather than once per shard
val bucketFunction = if (evenBuckets) {
fastBucketFunction(buckets(0), buckets(1)-buckets(0), buckets.length-1) _
fastBucketFunction(buckets.head, buckets.last, buckets.length - 1) _
} else {
basicBucketFunction _
}
......
......@@ -235,6 +235,12 @@ class DoubleRDDSuite extends FunSuite with SharedSparkContext {
assert(histogramBuckets === expectedHistogramBuckets)
}
test("WorksWithDoubleValuesAtMinMax") {
val rdd = sc.parallelize(Seq(1, 1, 1, 2, 3, 3))
assert(Array(3, 0, 1, 2) === rdd.map(_.toDouble).histogram(4)._2)
assert(Array(3, 1, 2) === rdd.map(_.toDouble).histogram(3)._2)
}
test("WorksWithoutBucketsWithMoreRequestedThanElements") {
// Verify the basic case of one bucket and all elements in that bucket works
val rdd = sc.parallelize(Seq(1, 2))
......@@ -248,7 +254,7 @@ class DoubleRDDSuite extends FunSuite with SharedSparkContext {
}
test("WorksWithoutBucketsForLargerDatasets") {
// Verify the case of slighly larger datasets
// Verify the case of slightly larger datasets
val rdd = sc.parallelize(6 to 99)
val (histogramBuckets, histogramResults) = rdd.histogram(8)
val expectedHistogramResults =
......@@ -259,17 +265,27 @@ class DoubleRDDSuite extends FunSuite with SharedSparkContext {
assert(histogramBuckets === expectedHistogramBuckets)
}
test("WorksWithoutBucketsWithIrrationalBucketEdges") {
// Verify the case of buckets with irrational edges. See #SPARK-2862.
test("WorksWithoutBucketsWithNonIntegralBucketEdges") {
// Verify the case of buckets with nonintegral edges. See #SPARK-2862.
val rdd = sc.parallelize(6 to 99)
val (histogramBuckets, histogramResults) = rdd.histogram(9)
// Buckets are 6.0, 16.333333333333336, 26.666666666666668, 37.0, 47.333333333333336 ...
val expectedHistogramResults =
Array(11, 10, 11, 10, 10, 11, 10, 10, 11)
Array(11, 10, 10, 11, 10, 10, 11, 10, 11)
assert(histogramResults === expectedHistogramResults)
assert(histogramBuckets(0) === 6.0)
assert(histogramBuckets(9) === 99.0)
}
test("WorksWithHugeRange") {
val rdd = sc.parallelize(Array(0, 1.0e24, 1.0e30))
val histogramResults = rdd.histogram(1000000)._2
assert(histogramResults(0) === 1)
assert(histogramResults(1) === 1)
assert(histogramResults.last === 1)
assert((2 to histogramResults.length - 2).forall(i => histogramResults(i) == 0))
}
// Test the failure mode with an invalid RDD
test("ThrowsExceptionOnInvalidRDDs") {
// infinity
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment