Skip to content
Snippets Groups Projects
Commit e6dd2374 authored by Marcelo Vanzin's avatar Marcelo Vanzin Committed by Imran Rashid
Browse files

[SPARK-11929][CORE] Make the repl log4j configuration override the root logger.

In the default Spark distribution, there are currently two separate
log4j config files, with different default values for the root logger,
so that when running the shell you have a different default log level.
This makes the shell more usable, since the logs don't overwhelm the
output.

But if you install a custom log4j.properties, you lose that, because
then it's going to be used no matter whether you're running a regular
app or the shell.

With this change, the overriding of the log level is done differently;
the log level repl's main class (org.apache.spark.repl.Main) is used
to define the root logger's level when running the shell, defaulting
to WARN if it's not set explicitly.

On a somewhat related change, the shell output about the "sc" variable
was changed a bit to contain a little more useful information about
the application, since when the root logger's log level is WARN, that
information is never shown to the user.

Author: Marcelo Vanzin <vanzin@cloudera.com>

Closes #9816 from vanzin/shell-logging.
parent f3152722
No related branches found
No related tags found
No related merge requests found
......@@ -22,6 +22,11 @@ log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n
# Set the default spark-shell log level to WARN. When running the spark-shell, the
# log level for this class is used to overwrite the root logger's log level, so that
# the user can have different defaults for the shell and regular Spark apps.
log4j.logger.org.apache.spark.repl.Main=WARN
# Settings to quiet third party logs that are too verbose
log4j.logger.org.spark-project.jetty=WARN
log4j.logger.org.spark-project.jetty.util.component.AbstractLifeCycle=ERROR
......
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Set everything to be logged to the console
log4j.rootCategory=WARN, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n
# Settings to quiet third party logs that are too verbose
log4j.logger.org.spark-project.jetty=WARN
log4j.logger.org.spark-project.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO
# SPARK-9183: Settings to avoid annoying messages when looking up nonexistent UDFs in SparkSQL with Hive support
log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL
log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR
......@@ -22,6 +22,11 @@ log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n
# Set the default spark-shell log level to WARN. When running the spark-shell, the
# log level for this class is used to overwrite the root logger's log level, so that
# the user can have different defaults for the shell and regular Spark apps.
log4j.logger.org.apache.spark.repl.Main=WARN
# Settings to quiet third party logs that are too verbose
log4j.logger.org.spark-project.jetty=WARN
log4j.logger.org.spark-project.jetty.util.component.AbstractLifeCycle=ERROR
......
......@@ -17,7 +17,7 @@
package org.apache.spark
import org.apache.log4j.{LogManager, PropertyConfigurator}
import org.apache.log4j.{Level, LogManager, PropertyConfigurator}
import org.slf4j.{Logger, LoggerFactory}
import org.slf4j.impl.StaticLoggerBinder
......@@ -119,30 +119,31 @@ trait Logging {
val usingLog4j12 = "org.slf4j.impl.Log4jLoggerFactory".equals(binderClass)
if (usingLog4j12) {
val log4j12Initialized = LogManager.getRootLogger.getAllAppenders.hasMoreElements
// scalastyle:off println
if (!log4j12Initialized) {
// scalastyle:off println
if (Utils.isInInterpreter) {
val replDefaultLogProps = "org/apache/spark/log4j-defaults-repl.properties"
Option(Utils.getSparkClassLoader.getResource(replDefaultLogProps)) match {
case Some(url) =>
PropertyConfigurator.configure(url)
System.err.println(s"Using Spark's repl log4j profile: $replDefaultLogProps")
System.err.println("To adjust logging level use sc.setLogLevel(\"INFO\")")
case None =>
System.err.println(s"Spark was unable to load $replDefaultLogProps")
}
} else {
val defaultLogProps = "org/apache/spark/log4j-defaults.properties"
Option(Utils.getSparkClassLoader.getResource(defaultLogProps)) match {
case Some(url) =>
PropertyConfigurator.configure(url)
System.err.println(s"Using Spark's default log4j profile: $defaultLogProps")
case None =>
System.err.println(s"Spark was unable to load $defaultLogProps")
}
val defaultLogProps = "org/apache/spark/log4j-defaults.properties"
Option(Utils.getSparkClassLoader.getResource(defaultLogProps)) match {
case Some(url) =>
PropertyConfigurator.configure(url)
System.err.println(s"Using Spark's default log4j profile: $defaultLogProps")
case None =>
System.err.println(s"Spark was unable to load $defaultLogProps")
}
// scalastyle:on println
}
if (Utils.isInInterpreter) {
// Use the repl's main class to define the default log level when running the shell,
// overriding the root logger's config if they're different.
val rootLogger = LogManager.getRootLogger()
val replLogger = LogManager.getLogger("org.apache.spark.repl.Main")
val replLevel = Option(replLogger.getLevel()).getOrElse(Level.WARN)
if (replLevel != rootLogger.getEffectiveLevel()) {
System.err.printf("Setting default log level to \"%s\".\n", replLevel)
System.err.println("To adjust logging level use sc.setLogLevel(newLevel).")
rootLogger.setLevel(replLevel)
}
}
// scalastyle:on println
}
Logging.initialized = true
......
......@@ -123,18 +123,19 @@ private[repl] trait SparkILoopInit {
def initializeSpark() {
intp.beQuietDuring {
command("""
@transient val sc = {
val _sc = org.apache.spark.repl.Main.interp.createSparkContext()
println("Spark context available as sc.")
_sc
}
@transient val sc = {
val _sc = org.apache.spark.repl.Main.interp.createSparkContext()
println("Spark context available as sc " +
s"(master = ${_sc.master}, app id = ${_sc.applicationId}).")
_sc
}
""")
command("""
@transient val sqlContext = {
val _sqlContext = org.apache.spark.repl.Main.interp.createSQLContext()
println("SQL context available as sqlContext.")
_sqlContext
}
@transient val sqlContext = {
val _sqlContext = org.apache.spark.repl.Main.interp.createSQLContext()
println("SQL context available as sqlContext.")
_sqlContext
}
""")
command("import org.apache.spark.SparkContext._")
command("import sqlContext.implicits._")
......
......@@ -37,18 +37,19 @@ class SparkILoop(in0: Option[BufferedReader], out: JPrintWriter)
def initializeSpark() {
intp.beQuietDuring {
processLine("""
@transient val sc = {
val _sc = org.apache.spark.repl.Main.createSparkContext()
println("Spark context available as sc.")
_sc
}
@transient val sc = {
val _sc = org.apache.spark.repl.Main.createSparkContext()
println("Spark context available as sc " +
s"(master = ${_sc.master}, app id = ${_sc.applicationId}).")
_sc
}
""")
processLine("""
@transient val sqlContext = {
val _sqlContext = org.apache.spark.repl.Main.createSQLContext()
println("SQL context available as sqlContext.")
_sqlContext
}
@transient val sqlContext = {
val _sqlContext = org.apache.spark.repl.Main.createSQLContext()
println("SQL context available as sqlContext.")
_sqlContext
}
""")
processLine("import org.apache.spark.SparkContext._")
processLine("import sqlContext.implicits._")
......@@ -85,7 +86,7 @@ class SparkILoop(in0: Option[BufferedReader], out: JPrintWriter)
/** Available commands */
override def commands: List[LoopCommand] = sparkStandardCommands
/**
/**
* We override `loadFiles` because we need to initialize Spark *before* the REPL
* sees any files, so that the Spark context is visible in those files. This is a bit of a
* hack, but there isn't another hook available to us at this point.
......@@ -98,7 +99,7 @@ class SparkILoop(in0: Option[BufferedReader], out: JPrintWriter)
object SparkILoop {
/**
/**
* Creates an interpreter loop with default settings and feeds
* the given code to it as input.
*/
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment