Skip to content
Snippets Groups Projects
Commit e4e8d8f3 authored by Xiangrui Meng's avatar Xiangrui Meng Committed by Reynold Xin
Browse files

[SPARK-1237, 1238] Improve the computation of YtY for implicit ALS

Computing YtY can be implemented using BLAS's DSPR operations instead of generating y_i y_i^T and then combining them. The latter generates many k-by-k matrices. On the movielens data, this change improves the performance by 10-20%. The algorithm remains the same, verified by computing RMSE on the movielens data.

To compare the results, I also added an option to set a random seed in ALS.

JIRA:
1. https://spark-project.atlassian.net/browse/SPARK-1237
2. https://spark-project.atlassian.net/browse/SPARK-1238

Author: Xiangrui Meng <meng@databricks.com>

Closes #131 from mengxr/als and squashes the following commits:

ed00432 [Xiangrui Meng] minor changes
d984623 [Xiangrui Meng] minor changes
2fc1641 [Xiangrui Meng] remove commented code
4c7cde2 [Xiangrui Meng] allow specifying a random seed in ALS
200bef0 [Xiangrui Meng] optimize computeYtY and updateBlock
parent 4ea23db0
No related branches found
No related tags found
No related merge requests found
......@@ -89,10 +89,15 @@ case class Rating(val user: Int, val product: Int, val rating: Double)
* indicated user
* preferences rather than explicit ratings given to items.
*/
class ALS private (var numBlocks: Int, var rank: Int, var iterations: Int, var lambda: Double,
var implicitPrefs: Boolean, var alpha: Double)
extends Serializable with Logging
{
class ALS private (
var numBlocks: Int,
var rank: Int,
var iterations: Int,
var lambda: Double,
var implicitPrefs: Boolean,
var alpha: Double,
var seed: Long = System.nanoTime()
) extends Serializable with Logging {
def this() = this(-1, 10, 10, 0.01, false, 1.0)
/**
......@@ -132,6 +137,12 @@ class ALS private (var numBlocks: Int, var rank: Int, var iterations: Int, var l
this
}
/** Sets a random seed to have deterministic results. */
def setSeed(seed: Long): ALS = {
this.seed = seed
this
}
/**
* Run ALS with the configured parameters on an input RDD of (user, product, rating) triples.
* Returns a MatrixFactorizationModel with feature vectors for each user and product.
......@@ -155,7 +166,7 @@ class ALS private (var numBlocks: Int, var rank: Int, var iterations: Int, var l
// Initialize user and product factors randomly, but use a deterministic seed for each
// partition so that fault recovery works
val seedGen = new Random()
val seedGen = new Random(seed)
val seed1 = seedGen.nextInt()
val seed2 = seedGen.nextInt()
// Hash an integer to propagate random bits at all positions, similar to java.util.HashTable
......@@ -210,21 +221,46 @@ class ALS private (var numBlocks: Int, var rank: Int, var iterations: Int, var l
*/
def computeYtY(factors: RDD[(Int, Array[Array[Double]])]) = {
if (implicitPrefs) {
Option(
factors.flatMapValues { case factorArray =>
factorArray.view.map { vector =>
val x = new DoubleMatrix(vector)
x.mmul(x.transpose())
}
}.reduceByKeyLocally((a, b) => a.addi(b))
.values
.reduce((a, b) => a.addi(b))
)
val n = rank * (rank + 1) / 2
val LYtY = factors.values.aggregate(new DoubleMatrix(n))( seqOp = (L, Y) => {
Y.foreach(y => dspr(1.0, new DoubleMatrix(y), L))
L
}, combOp = (L1, L2) => {
L1.addi(L2)
})
val YtY = new DoubleMatrix(rank, rank)
fillFullMatrix(LYtY, YtY)
Option(YtY)
} else {
None
}
}
/**
* Adds alpha * x * x.t to a matrix in-place. This is the same as BLAS's DSPR.
*
* @param L the lower triangular part of the matrix packed in an array (row major)
*/
private def dspr(alpha: Double, x: DoubleMatrix, L: DoubleMatrix) = {
val n = x.length
var i = 0
var j = 0
var idx = 0
var axi = 0.0
val xd = x.data
val Ld = L.data
while (i < n) {
axi = alpha * xd(i)
j = 0
while (j <= i) {
Ld(idx) += axi * xd(j)
j += 1
idx += 1
}
i += 1
}
}
/**
* Flatten out blocked user or product factors into an RDD of (id, factor vector) pairs
*/
......@@ -376,7 +412,8 @@ class ALS private (var numBlocks: Int, var rank: Int, var iterations: Int, var l
for (productBlock <- 0 until numBlocks) {
for (p <- 0 until blockFactors(productBlock).length) {
val x = new DoubleMatrix(blockFactors(productBlock)(p))
fillXtX(x, tempXtX)
tempXtX.fill(0.0)
dspr(1.0, x, tempXtX)
val (us, rs) = inLinkBlock.ratingsForBlock(productBlock)(p)
for (i <- 0 until us.length) {
implicitPrefs match {
......@@ -387,7 +424,7 @@ class ALS private (var numBlocks: Int, var rank: Int, var iterations: Int, var l
// Extension to the original paper to handle rs(i) < 0. confidence is a function
// of |rs(i)| instead so that it is never negative:
val confidence = 1 + alpha * abs(rs(i))
userXtX(us(i)).addi(tempXtX.mul(confidence - 1))
SimpleBlas.axpy(confidence - 1.0, tempXtX, userXtX(us(i)))
// For rs(i) < 0, the corresponding entry in P is 0 now, not 1 -- negative rs(i)
// means we try to reconstruct 0. We add terms only where P = 1, so, term below
// is now only added for rs(i) > 0:
......@@ -400,38 +437,19 @@ class ALS private (var numBlocks: Int, var rank: Int, var iterations: Int, var l
}
// Solve the least-squares problem for each user and return the new feature vectors
userXtX.zipWithIndex.map{ case (triangularXtX, index) =>
Array.range(0, numUsers).map { index =>
// Compute the full XtX matrix from the lower-triangular part we got above
fillFullMatrix(triangularXtX, fullXtX)
fillFullMatrix(userXtX(index), fullXtX)
// Add regularization
(0 until rank).foreach(i => fullXtX.data(i*rank + i) += lambda)
// Solve the resulting matrix, which is symmetric and positive-definite
implicitPrefs match {
case false => Solve.solvePositive(fullXtX, userXy(index)).data
case true => Solve.solvePositive(fullXtX.add(YtY.value.get), userXy(index)).data
case true => Solve.solvePositive(fullXtX.addi(YtY.value.get), userXy(index)).data
}
}
}
/**
* Set xtxDest to the lower-triangular part of x transpose * x. For efficiency in summing
* these matrices, we store xtxDest as only rank * (rank+1) / 2 values, namely the values
* at (0,0), (1,0), (1,1), (2,0), (2,1), (2,2), etc in that order.
*/
private def fillXtX(x: DoubleMatrix, xtxDest: DoubleMatrix) {
var i = 0
var pos = 0
while (i < x.length) {
var j = 0
while (j <= i) {
xtxDest.data(pos) = x.data(i) * x.data(j)
pos += 1
j += 1
}
i += 1
}
}
/**
* Given a triangular matrix in the order of fillXtX above, compute the full symmetric square
* matrix that it represents, storing it into destMatrix.
......@@ -455,9 +473,10 @@ class ALS private (var numBlocks: Int, var rank: Int, var iterations: Int, var l
/**
* Top-level methods for calling Alternating Least Squares (ALS) matrix factorizaton.
* Top-level methods for calling Alternating Least Squares (ALS) matrix factorization.
*/
object ALS {
/**
* Train a matrix factorization model given an RDD of ratings given by users to some products,
* in the form of (userID, productID, rating) pairs. We approximate the ratings matrix as the
......@@ -470,15 +489,39 @@ object ALS {
* @param iterations number of iterations of ALS (recommended: 10-20)
* @param lambda regularization factor (recommended: 0.01)
* @param blocks level of parallelism to split computation into
* @param seed random seed
*/
def train(
ratings: RDD[Rating],
rank: Int,
iterations: Int,
lambda: Double,
blocks: Int)
: MatrixFactorizationModel =
{
blocks: Int,
seed: Long
): MatrixFactorizationModel = {
new ALS(blocks, rank, iterations, lambda, false, 1.0, seed).run(ratings)
}
/**
* Train a matrix factorization model given an RDD of ratings given by users to some products,
* in the form of (userID, productID, rating) pairs. We approximate the ratings matrix as the
* product of two lower-rank matrices of a given rank (number of features). To solve for these
* features, we run a given number of iterations of ALS. This is done using a level of
* parallelism given by `blocks`.
*
* @param ratings RDD of (userID, productID, rating) pairs
* @param rank number of features to use
* @param iterations number of iterations of ALS (recommended: 10-20)
* @param lambda regularization factor (recommended: 0.01)
* @param blocks level of parallelism to split computation into
*/
def train(
ratings: RDD[Rating],
rank: Int,
iterations: Int,
lambda: Double,
blocks: Int
): MatrixFactorizationModel = {
new ALS(blocks, rank, iterations, lambda, false, 1.0).run(ratings)
}
......@@ -495,8 +538,7 @@ object ALS {
* @param lambda regularization factor (recommended: 0.01)
*/
def train(ratings: RDD[Rating], rank: Int, iterations: Int, lambda: Double)
: MatrixFactorizationModel =
{
: MatrixFactorizationModel = {
train(ratings, rank, iterations, lambda, -1)
}
......@@ -512,8 +554,7 @@ object ALS {
* @param iterations number of iterations of ALS (recommended: 10-20)
*/
def train(ratings: RDD[Rating], rank: Int, iterations: Int)
: MatrixFactorizationModel =
{
: MatrixFactorizationModel = {
train(ratings, rank, iterations, 0.01, -1)
}
......@@ -530,6 +571,7 @@ object ALS {
* @param lambda regularization factor (recommended: 0.01)
* @param blocks level of parallelism to split computation into
* @param alpha confidence parameter (only applies when immplicitPrefs = true)
* @param seed random seed
*/
def trainImplicit(
ratings: RDD[Rating],
......@@ -537,9 +579,34 @@ object ALS {
iterations: Int,
lambda: Double,
blocks: Int,
alpha: Double)
: MatrixFactorizationModel =
{
alpha: Double,
seed: Long
): MatrixFactorizationModel = {
new ALS(blocks, rank, iterations, lambda, true, alpha, seed).run(ratings)
}
/**
* Train a matrix factorization model given an RDD of 'implicit preferences' given by users
* to some products, in the form of (userID, productID, preference) pairs. We approximate the
* ratings matrix as the product of two lower-rank matrices of a given rank (number of features).
* To solve for these features, we run a given number of iterations of ALS. This is done using
* a level of parallelism given by `blocks`.
*
* @param ratings RDD of (userID, productID, rating) pairs
* @param rank number of features to use
* @param iterations number of iterations of ALS (recommended: 10-20)
* @param lambda regularization factor (recommended: 0.01)
* @param blocks level of parallelism to split computation into
* @param alpha confidence parameter (only applies when immplicitPrefs = true)
*/
def trainImplicit(
ratings: RDD[Rating],
rank: Int,
iterations: Int,
lambda: Double,
blocks: Int,
alpha: Double
): MatrixFactorizationModel = {
new ALS(blocks, rank, iterations, lambda, true, alpha).run(ratings)
}
......@@ -555,8 +622,8 @@ object ALS {
* @param iterations number of iterations of ALS (recommended: 10-20)
* @param lambda regularization factor (recommended: 0.01)
*/
def trainImplicit(ratings: RDD[Rating], rank: Int, iterations: Int, lambda: Double,
alpha: Double): MatrixFactorizationModel = {
def trainImplicit(ratings: RDD[Rating], rank: Int, iterations: Int, lambda: Double, alpha: Double)
: MatrixFactorizationModel = {
trainImplicit(ratings, rank, iterations, lambda, -1, alpha)
}
......@@ -573,8 +640,7 @@ object ALS {
* @param iterations number of iterations of ALS (recommended: 10-20)
*/
def trainImplicit(ratings: RDD[Rating], rank: Int, iterations: Int)
: MatrixFactorizationModel =
{
: MatrixFactorizationModel = {
trainImplicit(ratings, rank, iterations, 0.01, -1, 1.0)
}
......
......@@ -23,9 +23,10 @@ import scala.util.Random
import org.scalatest.FunSuite
import org.jblas._
import org.jblas.DoubleMatrix
import org.apache.spark.mllib.util.LocalSparkContext
import org.apache.spark.SparkContext._
object ALSSuite {
......@@ -115,6 +116,18 @@ class ALSSuite extends FunSuite with LocalSparkContext {
testALS(100, 200, 2, 15, 0.7, 0.4, true, false, true)
}
test("pseudorandomness") {
val ratings = sc.parallelize(ALSSuite.generateRatings(10, 20, 5, 0.5, false, false)._1, 2)
val model11 = ALS.train(ratings, 5, 1, 1.0, 2, 1)
val model12 = ALS.train(ratings, 5, 1, 1.0, 2, 1)
val u11 = model11.userFeatures.values.flatMap(_.toList).collect().toList
val u12 = model12.userFeatures.values.flatMap(_.toList).collect().toList
val model2 = ALS.train(ratings, 5, 1, 1.0, 2, 2)
val u2 = model2.userFeatures.values.flatMap(_.toList).collect().toList
assert(u11 == u12)
assert(u11 != u2)
}
/**
* Test if we can correctly factorize R = U * P where U and P are of known rank.
*
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment