-
- Downloads
[SPARK-1237, 1238] Improve the computation of YtY for implicit ALS
Computing YtY can be implemented using BLAS's DSPR operations instead of generating y_i y_i^T and then combining them. The latter generates many k-by-k matrices. On the movielens data, this change improves the performance by 10-20%. The algorithm remains the same, verified by computing RMSE on the movielens data. To compare the results, I also added an option to set a random seed in ALS. JIRA: 1. https://spark-project.atlassian.net/browse/SPARK-1237 2. https://spark-project.atlassian.net/browse/SPARK-1238 Author: Xiangrui Meng <meng@databricks.com> Closes #131 from mengxr/als and squashes the following commits: ed00432 [Xiangrui Meng] minor changes d984623 [Xiangrui Meng] minor changes 2fc1641 [Xiangrui Meng] remove commented code 4c7cde2 [Xiangrui Meng] allow specifying a random seed in ALS 200bef0 [Xiangrui Meng] optimize computeYtY and updateBlock
Showing
- mllib/src/main/scala/org/apache/spark/mllib/recommendation/ALS.scala 120 additions, 54 deletions...ain/scala/org/apache/spark/mllib/recommendation/ALS.scala
- mllib/src/test/scala/org/apache/spark/mllib/recommendation/ALSSuite.scala 14 additions, 1 deletion...cala/org/apache/spark/mllib/recommendation/ALSSuite.scala
Please register or sign in to comment