Skip to content
Snippets Groups Projects
Commit dcfe0c5c authored by Alexander Ulanov's avatar Alexander Ulanov Committed by Xiangrui Meng
Browse files

[SPARK-9846] [DOCS] User guide for Multilayer Perceptron Classifier

Added user guide for multilayer perceptron classifier:
  - Simplified description of the multilayer perceptron classifier
  - Example code for Scala and Java

Author: Alexander Ulanov <nashb@yandex.ru>

Closes #8262 from avulanov/SPARK-9846-mlpc-docs.
parent cdd9a2bb
No related branches found
No related tags found
No related merge requests found
---
layout: global
title: Multilayer perceptron classifier - ML
displayTitle: <a href="ml-guide.html">ML</a> - Multilayer perceptron classifier
---
`\[
\newcommand{\R}{\mathbb{R}}
\newcommand{\E}{\mathbb{E}}
\newcommand{\x}{\mathbf{x}}
\newcommand{\y}{\mathbf{y}}
\newcommand{\wv}{\mathbf{w}}
\newcommand{\av}{\mathbf{\alpha}}
\newcommand{\bv}{\mathbf{b}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\id}{\mathbf{I}}
\newcommand{\ind}{\mathbf{1}}
\newcommand{\0}{\mathbf{0}}
\newcommand{\unit}{\mathbf{e}}
\newcommand{\one}{\mathbf{1}}
\newcommand{\zero}{\mathbf{0}}
\]`
Multilayer perceptron classifier (MLPC) is a classifier based on the [feedforward artificial neural network](https://en.wikipedia.org/wiki/Feedforward_neural_network).
MLPC consists of multiple layers of nodes.
Each layer is fully connected to the next layer in the network. Nodes in the input layer represent the input data. All other nodes maps inputs to the outputs
by performing linear combination of the inputs with the node's weights `$\wv$` and bias `$\bv$` and applying an activation function.
It can be written in matrix form for MLPC with `$K+1$` layers as follows:
`\[
\mathrm{y}(\x) = \mathrm{f_K}(...\mathrm{f_2}(\wv_2^T\mathrm{f_1}(\wv_1^T \x+b_1)+b_2)...+b_K)
\]`
Nodes in intermediate layers use sigmoid (logistic) function:
`\[
\mathrm{f}(z_i) = \frac{1}{1 + e^{-z_i}}
\]`
Nodes in the output layer use softmax function:
`\[
\mathrm{f}(z_i) = \frac{e^{z_i}}{\sum_{k=1}^N e^{z_k}}
\]`
The number of nodes `$N$` in the output layer corresponds to the number of classes.
MLPC employes backpropagation for learning the model. We use logistic loss function for optimization and L-BFGS as optimization routine.
**Examples**
<div class="codetabs">
<div data-lang="scala" markdown="1">
{% highlight scala %}
import org.apache.spark.ml.classification.MultilayerPerceptronClassifier
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.sql.Row
// Load training data
val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_multiclass_classification_data.txt").toDF()
// Split the data into train and test
val splits = data.randomSplit(Array(0.6, 0.4), seed = 1234L)
val train = splits(0)
val test = splits(1)
// specify layers for the neural network:
// input layer of size 4 (features), two intermediate of size 5 and 4 and output of size 3 (classes)
val layers = Array[Int](4, 5, 4, 3)
// create the trainer and set its parameters
val trainer = new MultilayerPerceptronClassifier()
.setLayers(layers)
.setBlockSize(128)
.setSeed(1234L)
.setMaxIter(100)
// train the model
val model = trainer.fit(train)
// compute precision on the test set
val result = model.transform(test)
val predictionAndLabels = result.select("prediction", "label")
val evaluator = new MulticlassClassificationEvaluator()
.setMetricName("precision")
println("Precision:" + evaluator.evaluate(predictionAndLabels))
{% endhighlight %}
</div>
<div data-lang="java" markdown="1">
{% highlight java %}
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.classification.MultilayerPerceptronClassificationModel;
import org.apache.spark.ml.classification.MultilayerPerceptronClassifier;
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.util.MLUtils;
// Load training data
String path = "data/mllib/sample_multiclass_classification_data.txt";
JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(sc, path).toJavaRDD();
DataFrame dataFrame = sqlContext.createDataFrame(data, LabeledPoint.class);
// Split the data into train and test
DataFrame[] splits = dataFrame.randomSplit(new double[]{0.6, 0.4}, 1234L);
DataFrame train = splits[0];
DataFrame test = splits[1];
// specify layers for the neural network:
// input layer of size 4 (features), two intermediate of size 5 and 4 and output of size 3 (classes)
int[] layers = new int[] {4, 5, 4, 3};
// create the trainer and set its parameters
MultilayerPerceptronClassifier trainer = new MultilayerPerceptronClassifier()
.setLayers(layers)
.setBlockSize(128)
.setSeed(1234L)
.setMaxIter(100);
// train the model
MultilayerPerceptronClassificationModel model = trainer.fit(train);
// compute precision on the test set
DataFrame result = model.transform(test);
DataFrame predictionAndLabels = result.select("prediction", "label");
MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator()
.setMetricName("precision");
System.out.println("Precision = " + evaluator.evaluate(predictionAndLabels));
{% endhighlight %}
</div>
</div>
......@@ -179,6 +179,7 @@ There are now several algorithms in the Pipelines API which are not in the lower
* [Decision Trees for Classification and Regression](ml-decision-tree.html)
* [Ensembles](ml-ensembles.html)
* [Linear methods with elastic net regularization](ml-linear-methods.html)
* [Multilayer perceptron classifier](ml-ann.html)
# Code Examples
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment