Skip to content
Snippets Groups Projects
Commit d31c618e authored by Yuhao Yang's avatar Yuhao Yang Committed by Xiangrui Meng
Browse files

[SPARK-7368] [MLLIB] Add QR decomposition for RowMatrix

jira: https://issues.apache.org/jira/browse/SPARK-7368
Add QR decomposition for RowMatrix.

I'm not sure what's the blueprint about the distributed Matrix from community and whether this will be a desirable feature , so I sent a prototype for discussion. I'll go on polish the code and provide ut and performance statistics if it's acceptable.

The implementation refers to the [paper: https://www.cs.purdue.edu/homes/dgleich/publications/Benson%202013%20-%20direct-tsqr.pdf]
Austin R. Benson, David F. Gleich, James Demmel. "Direct QR factorizations for tall-and-skinny matrices in MapReduce architectures", 2013 IEEE International Conference on Big Data, which is a stable algorithm with good scalability.

Currently I tried it on a 400000 * 500 rowMatrix (16 partitions) and it can bring down the computation time from 8.8 mins (using breeze.linalg.qr.reduced)  to 2.6 mins on a 4 worker cluster. I think there will still be some room for performance improvement.

Any trial and suggestion is welcome.

Author: Yuhao Yang <hhbyyh@gmail.com>

Closes #5909 from hhbyyh/qrDecomposition and squashes the following commits:

cec797b [Yuhao Yang] remove unnecessary qr
0fb1012 [Yuhao Yang] hierarchy R computing
3fbdb61 [Yuhao Yang] update qr to indirect and add ut
0d913d3 [Yuhao Yang] Merge remote-tracking branch 'upstream/master' into qrDecomposition
39213c3 [Yuhao Yang] Merge remote-tracking branch 'upstream/master' into qrDecomposition
c0fc0c7 [Yuhao Yang] Merge remote-tracking branch 'upstream/master' into qrDecomposition
39b0b22 [Yuhao Yang] initial draft for discussion
parent 6175d6cf
No related branches found
No related tags found
No related merge requests found
......@@ -25,3 +25,11 @@ import org.apache.spark.annotation.Experimental
*/
@Experimental
case class SingularValueDecomposition[UType, VType](U: UType, s: Vector, V: VType)
/**
* :: Experimental ::
* Represents QR factors.
*/
@Experimental
case class QRDecomposition[UType, VType](Q: UType, R: VType)
......@@ -22,7 +22,7 @@ import java.util.Arrays
import scala.collection.mutable.ListBuffer
import breeze.linalg.{DenseMatrix => BDM, DenseVector => BDV, SparseVector => BSV, axpy => brzAxpy,
svd => brzSvd}
svd => brzSvd, MatrixSingularException, inv}
import breeze.numerics.{sqrt => brzSqrt}
import com.github.fommil.netlib.BLAS.{getInstance => blas}
......@@ -497,6 +497,50 @@ class RowMatrix(
columnSimilaritiesDIMSUM(computeColumnSummaryStatistics().normL2.toArray, gamma)
}
/**
* Compute QR decomposition for [[RowMatrix]]. The implementation is designed to optimize the QR
* decomposition (factorization) for the [[RowMatrix]] of a tall and skinny shape.
* Reference:
* Paul G. Constantine, David F. Gleich. "Tall and skinny QR factorizations in MapReduce
* architectures" ([[http://dx.doi.org/10.1145/1996092.1996103]])
*
* @param computeQ whether to computeQ
* @return QRDecomposition(Q, R), Q = null if computeQ = false.
*/
def tallSkinnyQR(computeQ: Boolean = false): QRDecomposition[RowMatrix, Matrix] = {
val col = numCols().toInt
// split rows horizontally into smaller matrices, and compute QR for each of them
val blockQRs = rows.glom().map { partRows =>
val bdm = BDM.zeros[Double](partRows.length, col)
var i = 0
partRows.foreach { row =>
bdm(i, ::) := row.toBreeze.t
i += 1
}
breeze.linalg.qr.reduced(bdm).r
}
// combine the R part from previous results vertically into a tall matrix
val combinedR = blockQRs.treeReduce{ (r1, r2) =>
val stackedR = BDM.vertcat(r1, r2)
breeze.linalg.qr.reduced(stackedR).r
}
val finalR = Matrices.fromBreeze(combinedR.toDenseMatrix)
val finalQ = if (computeQ) {
try {
val invR = inv(combinedR)
this.multiply(Matrices.fromBreeze(invR))
} catch {
case err: MatrixSingularException =>
logWarning("R is not invertible and return Q as null")
null
}
} else {
null
}
QRDecomposition(finalQ, finalR)
}
/**
* Find all similar columns using the DIMSUM sampling algorithm, described in two papers
*
......
......@@ -19,6 +19,7 @@ package org.apache.spark.mllib.linalg.distributed
import scala.util.Random
import breeze.numerics.abs
import breeze.linalg.{DenseVector => BDV, DenseMatrix => BDM, norm => brzNorm, svd => brzSvd}
import org.apache.spark.SparkFunSuite
......@@ -238,6 +239,22 @@ class RowMatrixSuite extends SparkFunSuite with MLlibTestSparkContext {
}
}
}
test("QR Decomposition") {
for (mat <- Seq(denseMat, sparseMat)) {
val result = mat.tallSkinnyQR(true)
val expected = breeze.linalg.qr.reduced(mat.toBreeze())
val calcQ = result.Q
val calcR = result.R
assert(closeToZero(abs(expected.q) - abs(calcQ.toBreeze())))
assert(closeToZero(abs(expected.r) - abs(calcR.toBreeze.asInstanceOf[BDM[Double]])))
assert(closeToZero(calcQ.multiply(calcR).toBreeze - mat.toBreeze()))
// Decomposition without computing Q
val rOnly = mat.tallSkinnyQR(computeQ = false)
assert(rOnly.Q == null)
assert(closeToZero(abs(expected.r) - abs(rOnly.R.toBreeze.asInstanceOf[BDM[Double]])))
}
}
}
class RowMatrixClusterSuite extends SparkFunSuite with LocalClusterSparkContext {
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment