Skip to content
Snippets Groups Projects
Commit cf6cbe9f authored by Andrew Or's avatar Andrew Or Committed by Patrick Wendell
Browse files

[SPARK-1824] Remove <master> from Python examples

A recent PR (#552) fixed this for all Scala / Java examples. We need to do it for python too.

Note that this blocks on #799, which makes `bin/pyspark` go through Spark submit. With only the changes in this PR, the only way to run these examples is through Spark submit. Once #799 goes in, you can use `bin/pyspark` to run them too. For example,

```
bin/pyspark examples/src/main/python/pi.py 100 --master local-cluster[4,1,512]
```

Author: Andrew Or <andrewor14@gmail.com>

Closes #802 from andrewor14/python-examples and squashes the following commits:

cf50b9f [Andrew Or] De-indent python comments (minor)
50f80b1 [Andrew Or] Remove pyFiles from SparkContext construction
c362f69 [Andrew Or] Update docs to use spark-submit for python applications
7072c6a [Andrew Or] Merge branch 'master' of github.com:apache/spark into python-examples
427a5f0 [Andrew Or] Update docs
d32072c [Andrew Or] Remove <master> from examples + update usages
parent 4b8ec6fc
No related branches found
No related tags found
No related merge requests found
......@@ -43,12 +43,15 @@ The `--master` option specifies the
locally with one thread, or `local[N]` to run locally with N threads. You should start by using
`local` for testing. For a full list of options, run Spark shell with the `--help` option.
Spark also provides a Python interface. To run an example Spark application written in Python, use
`bin/pyspark <program> [params]`. For example,
Spark also provides a Python interface. To run Spark interactively in a Python interpreter, use
`bin/pyspark`. As in Spark shell, you can also pass in the `--master` option to configure your
master URL.
./bin/pyspark examples/src/main/python/pi.py local[2] 10
./bin/pyspark --master local[2]
or simply `bin/pyspark` without any arguments to run Spark interactively in a python interpreter.
Example applications are also provided in Python. For example,
./bin/spark-submit examples/src/main/python/pi.py 10
# Launching on a Cluster
......
......@@ -60,13 +60,9 @@ By default, PySpark requires `python` to be available on the system `PATH` and u
All of PySpark's library dependencies, including [Py4J](http://py4j.sourceforge.net/), are bundled with PySpark and automatically imported.
Standalone PySpark applications should be run using the `bin/spark-submit` script, which automatically
configures the Java and Python environment for running Spark.
# Interactive Use
The `bin/pyspark` script launches a Python interpreter that is configured to run PySpark applications. To use `pyspark` interactively, first build Spark, then launch it directly from the command line without any options:
The `bin/pyspark` script launches a Python interpreter that is configured to run PySpark applications. To use `pyspark` interactively, first build Spark, then launch it directly from the command line:
{% highlight bash %}
$ sbt/sbt assembly
......@@ -83,20 +79,24 @@ The Python shell can be used explore data interactively and is a simple way to l
{% endhighlight %}
By default, the `bin/pyspark` shell creates SparkContext that runs applications locally on all of
your machine's logical cores.
To connect to a non-local cluster, or to specify a number of cores, set the `MASTER` environment variable.
For example, to use the `bin/pyspark` shell with a [standalone Spark cluster](spark-standalone.html):
your machine's logical cores. To connect to a non-local cluster, or to specify a number of cores,
set the `--master` flag. For example, to use the `bin/pyspark` shell with a
[standalone Spark cluster](spark-standalone.html):
{% highlight bash %}
$ MASTER=spark://IP:PORT ./bin/pyspark
$ ./bin/pyspark --master spark://1.2.3.4:7077
{% endhighlight %}
Or, to use exactly four cores on the local machine:
{% highlight bash %}
$ MASTER=local[4] ./bin/pyspark
$ ./bin/pyspark --master local[4]
{% endhighlight %}
Under the hood `bin/pyspark` is a wrapper around the
[Spark submit script](cluster-overview.html#launching-applications-with-spark-submit), so these
two scripts share the same list of options. For a complete list of options, run `bin/pyspark` with
the `--help` option.
## IPython
......@@ -115,13 +115,14 @@ the [IPython Notebook](http://ipython.org/notebook.html) with PyLab graphing sup
$ IPYTHON_OPTS="notebook --pylab inline" ./bin/pyspark
{% endhighlight %}
IPython also works on a cluster or on multiple cores if you set the `MASTER` environment variable.
IPython also works on a cluster or on multiple cores if you set the `--master` flag.
# Standalone Programs
PySpark can also be used from standalone Python scripts by creating a SparkContext in your script and running the script using `bin/spark-submit`.
The Quick Start guide includes a [complete example](quick-start.html#standalone-applications) of a standalone Python application.
PySpark can also be used from standalone Python scripts by creating a SparkContext in your script
and running the script using `bin/spark-submit`. The Quick Start guide includes a
[complete example](quick-start.html#standalone-applications) of a standalone Python application.
Code dependencies can be deployed by passing .zip or .egg files in the `--py-files` option of `spark-submit`:
......@@ -138,6 +139,7 @@ You can set [configuration properties](configuration.html#spark-properties) by p
{% highlight python %}
from pyspark import SparkConf, SparkContext
conf = (SparkConf()
.setMaster("local")
.setAppName("My app")
.set("spark.executor.memory", "1g"))
sc = SparkContext(conf = conf)
......@@ -164,6 +166,6 @@ some example applications.
PySpark also includes several sample programs in the [`examples/src/main/python` folder](https://github.com/apache/spark/tree/master/examples/src/main/python).
You can run them by passing the files to `pyspark`; e.g.:
./bin/spark-submit examples/src/main/python/wordcount.py local[2] README.md
./bin/spark-submit examples/src/main/python/wordcount.py README.md
Each program prints usage help when run without arguments.
Each program prints usage help when run without the sufficient arguments.
......@@ -46,15 +46,15 @@ def update(i, vec, mat, ratings):
return np.linalg.solve(XtX, Xty)
if __name__ == "__main__":
if len(sys.argv) < 2:
print >> sys.stderr, "Usage: als <master> <M> <U> <F> <iters> <slices>"
exit(-1)
sc = SparkContext(sys.argv[1], "PythonALS", pyFiles=[realpath(__file__)])
M = int(sys.argv[2]) if len(sys.argv) > 2 else 100
U = int(sys.argv[3]) if len(sys.argv) > 3 else 500
F = int(sys.argv[4]) if len(sys.argv) > 4 else 10
ITERATIONS = int(sys.argv[5]) if len(sys.argv) > 5 else 5
slices = int(sys.argv[6]) if len(sys.argv) > 6 else 2
"""
Usage: als [M] [U] [F] [iterations] [slices]"
"""
sc = SparkContext(appName="PythonALS")
M = int(sys.argv[1]) if len(sys.argv) > 1 else 100
U = int(sys.argv[2]) if len(sys.argv) > 2 else 500
F = int(sys.argv[3]) if len(sys.argv) > 3 else 10
ITERATIONS = int(sys.argv[4]) if len(sys.argv) > 4 else 5
slices = int(sys.argv[5]) if len(sys.argv) > 5 else 2
print "Running ALS with M=%d, U=%d, F=%d, iters=%d, slices=%d\n" % \
(M, U, F, ITERATIONS, slices)
......
......@@ -45,14 +45,14 @@ def closestPoint(p, centers):
if __name__ == "__main__":
if len(sys.argv) < 5:
print >> sys.stderr, "Usage: kmeans <master> <file> <k> <convergeDist>"
if len(sys.argv) != 4:
print >> sys.stderr, "Usage: kmeans <file> <k> <convergeDist>"
exit(-1)
sc = SparkContext(sys.argv[1], "PythonKMeans")
lines = sc.textFile(sys.argv[2])
sc = SparkContext(appName="PythonKMeans")
lines = sc.textFile(sys.argv[1])
data = lines.map(parseVector).cache()
K = int(sys.argv[3])
convergeDist = float(sys.argv[4])
K = int(sys.argv[2])
convergeDist = float(sys.argv[3])
kPoints = data.takeSample(False, K, 1)
tempDist = 1.0
......
......@@ -47,12 +47,12 @@ def readPointBatch(iterator):
return [matrix]
if __name__ == "__main__":
if len(sys.argv) != 4:
print >> sys.stderr, "Usage: logistic_regression <master> <file> <iters>"
if len(sys.argv) != 3:
print >> sys.stderr, "Usage: logistic_regression <file> <iterations>"
exit(-1)
sc = SparkContext(sys.argv[1], "PythonLR", pyFiles=[realpath(__file__)])
points = sc.textFile(sys.argv[2]).mapPartitions(readPointBatch).cache()
iterations = int(sys.argv[3])
sc = SparkContext(appName="PythonLR")
points = sc.textFile(sys.argv[1]).mapPartitions(readPointBatch).cache()
iterations = int(sys.argv[2])
# Initialize w to a random value
w = 2 * np.random.ranf(size=D) - 1
......
......@@ -33,12 +33,12 @@ def parseVector(line):
if __name__ == "__main__":
if len(sys.argv) < 4:
print >> sys.stderr, "Usage: kmeans <master> <file> <k>"
if len(sys.argv) != 3:
print >> sys.stderr, "Usage: kmeans <file> <k>"
exit(-1)
sc = SparkContext(sys.argv[1], "KMeans")
lines = sc.textFile(sys.argv[2])
sc = SparkContext(appName="KMeans")
lines = sc.textFile(sys.argv[1])
data = lines.map(parseVector)
k = int(sys.argv[3])
k = int(sys.argv[2])
model = KMeans.train(data, k)
print "Final centers: " + str(model.clusterCenters)
......@@ -39,12 +39,12 @@ def parsePoint(line):
if __name__ == "__main__":
if len(sys.argv) != 4:
print >> sys.stderr, "Usage: logistic_regression <master> <file> <iters>"
if len(sys.argv) != 3:
print >> sys.stderr, "Usage: logistic_regression <file> <iterations>"
exit(-1)
sc = SparkContext(sys.argv[1], "PythonLR")
points = sc.textFile(sys.argv[2]).map(parsePoint)
iterations = int(sys.argv[3])
sc = SparkContext(appName="PythonLR")
points = sc.textFile(sys.argv[1]).map(parsePoint)
iterations = int(sys.argv[2])
model = LogisticRegressionWithSGD.train(points, iterations)
print "Final weights: " + str(model.weights)
print "Final intercept: " + str(model.intercept)
......@@ -36,19 +36,19 @@ def parseNeighbors(urls):
if __name__ == "__main__":
if len(sys.argv) < 3:
print >> sys.stderr, "Usage: pagerank <master> <file> <number_of_iterations>"
if len(sys.argv) != 3:
print >> sys.stderr, "Usage: pagerank <file> <iterations>"
exit(-1)
# Initialize the spark context.
sc = SparkContext(sys.argv[1], "PythonPageRank")
sc = SparkContext(appName="PythonPageRank")
# Loads in input file. It should be in format of:
# URL neighbor URL
# URL neighbor URL
# URL neighbor URL
# ...
lines = sc.textFile(sys.argv[2], 1)
lines = sc.textFile(sys.argv[1], 1)
# Loads all URLs from input file and initialize their neighbors.
links = lines.map(lambda urls: parseNeighbors(urls)).distinct().groupByKey().cache()
......@@ -57,7 +57,7 @@ if __name__ == "__main__":
ranks = links.map(lambda (url, neighbors): (url, 1.0))
# Calculates and updates URL ranks continuously using PageRank algorithm.
for iteration in xrange(int(sys.argv[3])):
for iteration in xrange(int(sys.argv[2])):
# Calculates URL contributions to the rank of other URLs.
contribs = links.join(ranks).flatMap(lambda (url, (urls, rank)):
computeContribs(urls, rank))
......
......@@ -23,11 +23,11 @@ from pyspark import SparkContext
if __name__ == "__main__":
if len(sys.argv) == 1:
print >> sys.stderr, "Usage: pi <master> [<slices>]"
exit(-1)
sc = SparkContext(sys.argv[1], "PythonPi")
slices = int(sys.argv[2]) if len(sys.argv) > 2 else 2
"""
Usage: pi [slices]
"""
sc = SparkContext(appName="PythonPi")
slices = int(sys.argv[1]) if len(sys.argv) > 1 else 2
n = 100000 * slices
def f(_):
x = random() * 2 - 1
......
......@@ -21,11 +21,11 @@ from pyspark import SparkContext
if __name__ == "__main__":
if len(sys.argv) < 3:
print >> sys.stderr, "Usage: sort <master> <file>"
if len(sys.argv) != 2:
print >> sys.stderr, "Usage: sort <file>"
exit(-1)
sc = SparkContext(sys.argv[1], "PythonSort")
lines = sc.textFile(sys.argv[2], 1)
sc = SparkContext(appName="PythonSort")
lines = sc.textFile(sys.argv[1], 1)
sortedCount = lines.flatMap(lambda x: x.split(' ')) \
.map(lambda x: (int(x), 1)) \
.sortByKey(lambda x: x)
......
......@@ -36,11 +36,11 @@ def generateGraph():
if __name__ == "__main__":
if len(sys.argv) == 1:
print >> sys.stderr, "Usage: transitive_closure <master> [<slices>]"
exit(-1)
sc = SparkContext(sys.argv[1], "PythonTransitiveClosure")
slices = int(sys.argv[2]) if len(sys.argv) > 2 else 2
"""
Usage: transitive_closure [slices]
"""
sc = SparkContext(appName="PythonTransitiveClosure")
slices = int(sys.argv[1]) if len(sys.argv) > 1 else 2
tc = sc.parallelize(generateGraph(), slices).cache()
# Linear transitive closure: each round grows paths by one edge,
......
......@@ -22,11 +22,11 @@ from pyspark import SparkContext
if __name__ == "__main__":
if len(sys.argv) < 3:
print >> sys.stderr, "Usage: wordcount <master> <file>"
if len(sys.argv) != 2:
print >> sys.stderr, "Usage: wordcount <file>"
exit(-1)
sc = SparkContext(sys.argv[1], "PythonWordCount")
lines = sc.textFile(sys.argv[2], 1)
sc = SparkContext(appName="PythonWordCount")
lines = sc.textFile(sys.argv[1], 1)
counts = lines.flatMap(lambda x: x.split(' ')) \
.map(lambda x: (x, 1)) \
.reduceByKey(add)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment