Skip to content
Snippets Groups Projects
Commit ce112cec authored by actuaryzhang's avatar actuaryzhang Committed by Felix Cheung
Browse files

[SPARK-19395][SPARKR] Convert coefficients in summary to matrix

## What changes were proposed in this pull request?
The `coefficients` component in model summary should be 'matrix' but the underlying structure is indeed list. This affects several models except for 'AFTSurvivalRegressionModel' which has the correct implementation. The fix is to first `unlist` the coefficients returned from the `callJMethod` before converting to matrix. An example illustrates the issues:

```
data(iris)
df <- createDataFrame(iris)
model <- spark.glm(df, Sepal_Length ~ Sepal_Width, family = "gaussian")
s <- summary(model)

> str(s$coefficients)
List of 8
 $ : num 6.53
 $ : num -0.223
 $ : num 0.479
 $ : num 0.155
 $ : num 13.6
 $ : num -1.44
 $ : num 0
 $ : num 0.152
 - attr(*, "dim")= int [1:2] 2 4
 - attr(*, "dimnames")=List of 2
  ..$ : chr [1:2] "(Intercept)" "Sepal_Width"
  ..$ : chr [1:4] "Estimate" "Std. Error" "t value" "Pr(>|t|)"
> s$coefficients[, 2]
$`(Intercept)`
[1] 0.4788963

$Sepal_Width
[1] 0.1550809
```

This  shows that the underlying structure of coefficients is still `list`.

felixcheung wangmiao1981

Author: actuaryzhang <actuaryzhang10@gmail.com>

Closes #16730 from actuaryzhang/sparkRCoef.
parent 26a4cba3
No related branches found
No related tags found
No related merge requests found
......@@ -145,7 +145,7 @@ setMethod("summary", signature(object = "LogisticRegressionModel"),
labels <- callJMethod(jobj, "labels")
coefficients <- callJMethod(jobj, "rCoefficients")
nCol <- length(coefficients) / length(features)
coefficients <- matrix(coefficients, ncol = nCol)
coefficients <- matrix(unlist(coefficients), ncol = nCol)
# If nCol == 1, means this is a binomial logistic regression model with pivoting.
# Otherwise, it's a multinomial logistic regression model without pivoting.
if (nCol == 1) {
......
......@@ -390,7 +390,7 @@ setMethod("summary", signature(object = "KMeansModel"),
coefficients <- callJMethod(jobj, "coefficients")
k <- callJMethod(jobj, "k")
size <- callJMethod(jobj, "size")
coefficients <- t(matrix(coefficients, ncol = k))
coefficients <- t(matrix(unlist(coefficients), ncol = k))
colnames(coefficients) <- unlist(features)
rownames(coefficients) <- 1:k
cluster <- if (is.loaded) {
......
......@@ -182,11 +182,11 @@ setMethod("summary", signature(object = "GeneralizedLinearRegressionModel"),
# coefficients, standard error of coefficients, t value and p value. Otherwise,
# it will be fitted by local "l-bfgs", we can only provide coefficients.
if (length(features) == length(coefficients)) {
coefficients <- matrix(coefficients, ncol = 1)
coefficients <- matrix(unlist(coefficients), ncol = 1)
colnames(coefficients) <- c("Estimate")
rownames(coefficients) <- unlist(features)
} else {
coefficients <- matrix(coefficients, ncol = 4)
coefficients <- matrix(unlist(coefficients), ncol = 4)
colnames(coefficients) <- c("Estimate", "Std. Error", "t value", "Pr(>|t|)")
rownames(coefficients) <- unlist(features)
}
......
......@@ -68,12 +68,17 @@ test_that("spark.logit", {
df <- suppressWarnings(createDataFrame(iris))
model <- spark.logit(df, Species ~ ., regParam = 0.5)
summary <- summary(model)
# test summary coefficients return matrix type
expect_true(class(summary$coefficients) == "matrix")
expect_true(class(summary$coefficients[, 1]) == "numeric")
versicolorCoefsR <- c(1.52, 0.03, -0.53, 0.04, 0.00)
virginicaCoefsR <- c(-2.62, 0.27, -0.02, 0.16, 0.42)
setosaCoefsR <- c(1.10, -0.29, 0.55, -0.19, -0.42)
versicolorCoefs <- unlist(summary$coefficients[, "versicolor"])
virginicaCoefs <- unlist(summary$coefficients[, "virginica"])
setosaCoefs <- unlist(summary$coefficients[, "setosa"])
versicolorCoefs <- summary$coefficients[, "versicolor"]
virginicaCoefs <- summary$coefficients[, "virginica"]
setosaCoefs <- summary$coefficients[, "setosa"]
expect_true(all(abs(versicolorCoefsR - versicolorCoefs) < 0.1))
expect_true(all(abs(virginicaCoefsR - virginicaCoefs) < 0.1))
expect_true(all(abs(setosaCoefs - setosaCoefs) < 0.1))
......@@ -136,8 +141,8 @@ test_that("spark.logit", {
summary <- summary(model)
versicolorCoefsR <- c(3.94, -0.16, -0.02, -0.35, -0.78)
virginicaCoefsR <- c(-3.94, 0.16, -0.02, 0.35, 0.78)
versicolorCoefs <- unlist(summary$coefficients[, "versicolor"])
virginicaCoefs <- unlist(summary$coefficients[, "virginica"])
versicolorCoefs <- summary$coefficients[, "versicolor"]
virginicaCoefs <- summary$coefficients[, "virginica"]
expect_true(all(abs(versicolorCoefsR - versicolorCoefs) < 0.1))
expect_true(all(abs(virginicaCoefsR - virginicaCoefs) < 0.1))
......@@ -145,7 +150,7 @@ test_that("spark.logit", {
model <- spark.logit(training, Species ~ ., regParam = 0.5)
summary <- summary(model)
coefsR <- c(-6.08, 0.25, 0.16, 0.48, 1.04)
coefs <- unlist(summary$coefficients[, "Estimate"])
coefs <- summary$coefficients[, "Estimate"]
expect_true(all(abs(coefsR - coefs) < 0.1))
# Test prediction with string label
......
......@@ -166,6 +166,10 @@ test_that("spark.kmeans", {
expect_equal(k, 2)
expect_equal(sort(collect(distinct(select(cluster, "prediction")))$prediction), c(0, 1))
# test summary coefficients return matrix type
expect_true(class(summary.model$coefficients) == "matrix")
expect_true(class(summary.model$coefficients[1, ]) == "numeric")
# Test model save/load
modelPath <- tempfile(pattern = "spark-kmeans", fileext = ".tmp")
write.ml(model, modelPath)
......
......@@ -87,11 +87,14 @@ test_that("spark.glm summary", {
# gaussian family
training <- suppressWarnings(createDataFrame(iris))
stats <- summary(spark.glm(training, Sepal_Width ~ Sepal_Length + Species))
rStats <- summary(glm(Sepal.Width ~ Sepal.Length + Species, data = iris))
coefs <- unlist(stats$coefficients)
rCoefs <- unlist(rStats$coefficients)
# test summary coefficients return matrix type
expect_true(class(stats$coefficients) == "matrix")
expect_true(class(stats$coefficients[, 1]) == "numeric")
coefs <- stats$coefficients
rCoefs <- rStats$coefficients
expect_true(all(abs(rCoefs - coefs) < 1e-4))
expect_true(all(
rownames(stats$coefficients) ==
......@@ -117,8 +120,8 @@ test_that("spark.glm summary", {
rStats <- summary(glm(Species ~ Sepal.Length + Sepal.Width, data = rTraining,
family = binomial(link = "logit")))
coefs <- unlist(stats$coefficients)
rCoefs <- unlist(rStats$coefficients)
coefs <- stats$coefficients
rCoefs <- rStats$coefficients
expect_true(all(abs(rCoefs - coefs) < 1e-4))
expect_true(all(
rownames(stats$coefficients) ==
......@@ -141,8 +144,8 @@ test_that("spark.glm summary", {
stats <- summary(spark.glm(df, b ~ a1 + a2, family = "binomial", weightCol = "w"))
rStats <- summary(glm(b ~ a1 + a2, family = "binomial", data = data, weights = w))
coefs <- unlist(stats$coefficients)
rCoefs <- unlist(rStats$coefficients)
coefs <- stats$coefficients
rCoefs <- rStats$coefficients
expect_true(all(abs(rCoefs - coefs) < 1e-3))
expect_true(all(rownames(stats$coefficients) == c("(Intercept)", "a1", "a2")))
expect_equal(stats$dispersion, rStats$dispersion)
......@@ -169,7 +172,7 @@ test_that("spark.glm summary", {
data <- as.data.frame(cbind(A, b))
df <- createDataFrame(data)
stats <- summary(spark.glm(df, b ~ . - 1))
coefs <- unlist(stats$coefficients)
coefs <- stats$coefficients
expect_true(all(abs(c(0.5, 0.25) - coefs) < 1e-4))
})
......@@ -259,8 +262,8 @@ test_that("glm summary", {
rStats <- summary(glm(Sepal.Width ~ Sepal.Length + Species, data = iris))
coefs <- unlist(stats$coefficients)
rCoefs <- unlist(rStats$coefficients)
coefs <- stats$coefficients
rCoefs <- rStats$coefficients
expect_true(all(abs(rCoefs - coefs) < 1e-4))
expect_true(all(
rownames(stats$coefficients) ==
......@@ -282,8 +285,8 @@ test_that("glm summary", {
rStats <- summary(glm(Species ~ Sepal.Length + Sepal.Width, data = rTraining,
family = binomial(link = "logit")))
coefs <- unlist(stats$coefficients)
rCoefs <- unlist(rStats$coefficients)
coefs <- stats$coefficients
rCoefs <- rStats$coefficients
expect_true(all(abs(rCoefs - coefs) < 1e-4))
expect_true(all(
rownames(stats$coefficients) ==
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment