Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
spark
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
cs525-sp18-g07
spark
Commits
ccd075cf
Commit
ccd075cf
authored
12 years ago
by
Josh Rosen
Browse files
Options
Downloads
Patches
Plain Diff
Reduce object overhead in Pyspark shuffle and collect
parent
2ccf3b66
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
pyspark/pyspark/rdd.py
+14
-5
14 additions, 5 deletions
pyspark/pyspark/rdd.py
with
14 additions
and
5 deletions
pyspark/pyspark/rdd.py
+
14
−
5
View file @
ccd075cf
...
@@ -145,8 +145,10 @@ class RDD(object):
...
@@ -145,8 +145,10 @@ class RDD(object):
self
.
map
(
f
).
collect
()
# Force evaluation
self
.
map
(
f
).
collect
()
# Force evaluation
def
collect
(
self
):
def
collect
(
self
):
pickle
=
self
.
ctx
.
arrayAsPickle
(
self
.
_jrdd
.
rdd
().
collect
())
def
asList
(
iterator
):
return
load_pickle
(
bytes
(
pickle
))
yield
list
(
iterator
)
pickles
=
self
.
mapPartitions
(
asList
).
_jrdd
.
rdd
().
collect
()
return
list
(
chain
.
from_iterable
(
load_pickle
(
bytes
(
p
))
for
p
in
pickles
))
def
reduce
(
self
,
f
):
def
reduce
(
self
,
f
):
"""
"""
...
@@ -319,16 +321,23 @@ class RDD(object):
...
@@ -319,16 +321,23 @@ class RDD(object):
if
numSplits
is
None
:
if
numSplits
is
None
:
numSplits
=
self
.
ctx
.
defaultParallelism
numSplits
=
self
.
ctx
.
defaultParallelism
def
add_shuffle_key
(
iterator
):
def
add_shuffle_key
(
iterator
):
buckets
=
defaultdict
(
list
)
for
(
k
,
v
)
in
iterator
:
for
(
k
,
v
)
in
iterator
:
yield
str
(
hashFunc
(
k
))
buckets
[
hashFunc
(
k
)
%
numSplits
].
append
((
k
,
v
))
yield
dump_pickle
((
k
,
v
))
for
(
split
,
items
)
in
buckets
.
iteritems
():
yield
str
(
split
)
yield
dump_pickle
(
items
)
keyed
=
PipelinedRDD
(
self
,
add_shuffle_key
)
keyed
=
PipelinedRDD
(
self
,
add_shuffle_key
)
keyed
.
_bypass_serializer
=
True
keyed
.
_bypass_serializer
=
True
pairRDD
=
self
.
ctx
.
jvm
.
PairwiseRDD
(
keyed
.
_jrdd
.
rdd
()).
asJavaPairRDD
()
pairRDD
=
self
.
ctx
.
jvm
.
PairwiseRDD
(
keyed
.
_jrdd
.
rdd
()).
asJavaPairRDD
()
partitioner
=
self
.
ctx
.
jvm
.
spark
.
api
.
python
.
PythonPartitioner
(
numSplits
)
partitioner
=
self
.
ctx
.
jvm
.
spark
.
api
.
python
.
PythonPartitioner
(
numSplits
)
# Transferring O(n) objects to Java is too expensive. Instead, we'll
# form the hash buckets in Python, transferring O(numSplits) objects
# to Java. Each object is a (splitNumber, [objects]) pair.
jrdd
=
pairRDD
.
partitionBy
(
partitioner
)
jrdd
=
pairRDD
.
partitionBy
(
partitioner
)
jrdd
=
jrdd
.
map
(
self
.
ctx
.
jvm
.
ExtractValue
())
jrdd
=
jrdd
.
map
(
self
.
ctx
.
jvm
.
ExtractValue
())
return
RDD
(
jrdd
,
self
.
ctx
)
# Flatten the resulting RDD:
return
RDD
(
jrdd
,
self
.
ctx
).
flatMap
(
lambda
items
:
items
)
def
combineByKey
(
self
,
createCombiner
,
mergeValue
,
mergeCombiners
,
def
combineByKey
(
self
,
createCombiner
,
mergeValue
,
mergeCombiners
,
numSplits
=
None
):
numSplits
=
None
):
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment