Skip to content
Snippets Groups Projects
Commit ca003354 authored by Liang-Chi Hsieh's avatar Liang-Chi Hsieh Committed by Michael Armbrust
Browse files

[SPARK-12443][SQL] encoderFor should support Decimal

## What changes were proposed in this pull request?

JIRA: https://issues.apache.org/jira/browse/SPARK-12443

`constructorFor` will call `dataTypeFor` to determine if a type is `ObjectType` or not. If there is not case for `Decimal`, it will be recognized as `ObjectType` and causes the bug.

## How was this patch tested?

Test is added into `ExpressionEncoderSuite`.

Author: Liang-Chi Hsieh <simonh@tw.ibm.com>
Author: Liang-Chi Hsieh <viirya@gmail.com>

Closes #10399 from viirya/fix-encoder-decimal.
parent 11fa8741
No related branches found
No related tags found
No related merge requests found
......@@ -63,6 +63,7 @@ object ScalaReflection extends ScalaReflection {
case t if t <:< definitions.ByteTpe => ByteType
case t if t <:< definitions.BooleanTpe => BooleanType
case t if t <:< localTypeOf[Array[Byte]] => BinaryType
case t if t <:< localTypeOf[Decimal] => DecimalType.SYSTEM_DEFAULT
case _ =>
val className = getClassNameFromType(tpe)
className match {
......
......@@ -79,7 +79,7 @@ object RowEncoder {
StaticInvoke(
Decimal.getClass,
DecimalType.SYSTEM_DEFAULT,
"apply",
"fromDecimal",
inputObject :: Nil)
case StringType =>
......@@ -95,7 +95,7 @@ object RowEncoder {
classOf[GenericArrayData],
inputObject :: Nil,
dataType = t)
case _ => MapObjects(extractorsFor(_, et), inputObject, externalDataTypeFor(et))
case _ => MapObjects(extractorsFor(_, et), inputObject, externalDataTypeForInput(et))
}
case t @ MapType(kt, vt, valueNullable) =>
......@@ -129,7 +129,7 @@ object RowEncoder {
Invoke(inputObject, "isNullAt", BooleanType, Literal(i) :: Nil),
Literal.create(null, f.dataType),
extractorsFor(
Invoke(inputObject, method, externalDataTypeFor(f.dataType), Literal(i) :: Nil),
Invoke(inputObject, method, externalDataTypeForInput(f.dataType), Literal(i) :: Nil),
f.dataType))
}
If(IsNull(inputObject),
......@@ -137,6 +137,21 @@ object RowEncoder {
CreateStruct(convertedFields))
}
/**
* Returns the `DataType` that can be used when generating code that converts input data
* into the Spark SQL internal format. Unlike `externalDataTypeFor`, the `DataType` returned
* by this function can be more permissive since multiple external types may map to a single
* internal type. For example, for an input with DecimalType in external row, its external types
* can be `scala.math.BigDecimal`, `java.math.BigDecimal`, or
* `org.apache.spark.sql.types.Decimal`.
*/
private def externalDataTypeForInput(dt: DataType): DataType = dt match {
// In order to support both Decimal and java BigDecimal in external row, we make this
// as java.lang.Object.
case _: DecimalType => ObjectType(classOf[java.lang.Object])
case _ => externalDataTypeFor(dt)
}
private def externalDataTypeFor(dt: DataType): DataType = dt match {
case _ if ScalaReflection.isNativeType(dt) => dt
case CalendarIntervalType => dt
......
......@@ -376,6 +376,14 @@ object Decimal {
def apply(value: String): Decimal = new Decimal().set(BigDecimal(value))
// This is used for RowEncoder to handle Decimal inside external row.
def fromDecimal(value: Any): Decimal = {
value match {
case j: java.math.BigDecimal => apply(j)
case d: Decimal => d
}
}
/**
* Creates a decimal from unscaled, precision and scale without checking the bounds.
*/
......
......@@ -30,7 +30,7 @@ import org.apache.spark.sql.catalyst.expressions.{Alias, AttributeReference}
import org.apache.spark.sql.catalyst.plans.PlanTest
import org.apache.spark.sql.catalyst.plans.logical.{LocalRelation, Project}
import org.apache.spark.sql.catalyst.util.ArrayData
import org.apache.spark.sql.types.{ArrayType, ObjectType, StructType}
import org.apache.spark.sql.types.{ArrayType, Decimal, ObjectType, StructType}
case class RepeatedStruct(s: Seq[PrimitiveData])
......@@ -101,6 +101,8 @@ class ExpressionEncoderSuite extends PlanTest with AnalysisTest {
encodeDecodeTest(BigDecimal("32131413.211321313"), "scala decimal")
// encodeDecodeTest(new java.math.BigDecimal("231341.23123"), "java decimal")
encodeDecodeTest(Decimal("32131413.211321313"), "catalyst decimal")
encodeDecodeTest("hello", "string")
encodeDecodeTest(Date.valueOf("2012-12-23"), "date")
encodeDecodeTest(Timestamp.valueOf("2016-01-29 10:00:00"), "timestamp")
......
......@@ -143,6 +143,23 @@ class RowEncoderSuite extends SparkFunSuite {
assert(input.getStruct(0) == convertedBack.getStruct(0))
}
test("encode/decode Decimal") {
val schema = new StructType()
.add("int", IntegerType)
.add("string", StringType)
.add("double", DoubleType)
.add("decimal", DecimalType.SYSTEM_DEFAULT)
val encoder = RowEncoder(schema)
val input: Row = Row(100, "test", 0.123, Decimal(1234.5678))
val row = encoder.toRow(input)
val convertedBack = encoder.fromRow(row)
// Decimal inside external row will be converted back to Java BigDecimal when decoding.
assert(input.get(3).asInstanceOf[Decimal].toJavaBigDecimal
.compareTo(convertedBack.getDecimal(3)) == 0)
}
private def encodeDecodeTest(schema: StructType): Unit = {
test(s"encode/decode: ${schema.simpleString}") {
val encoder = RowEncoder(schema)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment