Skip to content
Snippets Groups Projects
Commit be52faa7 authored by DB Tsai's avatar DB Tsai Committed by Xiangrui Meng
Browse files

[SPARK-7685] [ML] Apply weights to different samples in Logistic Regression

In fraud detection dataset, almost all the samples are negative while only couple of them are positive. This type of high imbalanced data will bias the models toward negative resulting poor performance. In python-scikit, they provide a correction allowing users to Over-/undersample the samples of each class according to the given weights. In auto mode, selects weights inversely proportional to class frequencies in the training set. This can be done in a more efficient way by multiplying the weights into loss and gradient instead of doing actual over/undersampling in the training dataset which is very expensive.
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
On the other hand, some of the training data maybe more important like the training samples from tenure users while the training samples from new users maybe less important. We should be able to provide another "weight: Double" information in the LabeledPoint to weight them differently in the learning algorithm.

Author: DB Tsai <dbt@netflix.com>
Author: DB Tsai <dbt@dbs-mac-pro.corp.netflix.com>

Closes #7884 from dbtsai/SPARK-7685.
parent 31a229aa
No related branches found
No related tags found
No related merge requests found
Loading
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment