Skip to content
Snippets Groups Projects
Commit ae58aea2 authored by DB Tsai's avatar DB Tsai Committed by Xiangrui Meng
Browse files

SPARK-2272 [MLlib] Feature scaling which standardizes the range of independent...

SPARK-2272 [MLlib] Feature scaling which standardizes the range of independent variables or features of data

Feature scaling is a method used to standardize the range of independent variables or features of data. In data processing, it is generally performed during the data preprocessing step.

In this work, a trait called `VectorTransformer` is defined for generic transformation on a vector. It contains one method to be implemented, `transform` which applies transformation on a vector.

There are two implementations of `VectorTransformer` now, and they all can be easily extended with PMML transformation support.

1) `StandardScaler` - Standardizes features by removing the mean and scaling to unit variance using column summary statistics on the samples in the training set.

2) `Normalizer` - Normalizes samples individually to unit L^n norm

Author: DB Tsai <dbtsai@alpinenow.com>

Closes #1207 from dbtsai/dbtsai-feature-scaling and squashes the following commits:

78c15d3 [DB Tsai] Alpine Data Labs
parent 5507dd8e
No related branches found
No related tags found
No related merge requests found
Loading
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment