Skip to content
Snippets Groups Projects
Commit a8eb92dc authored by Burak Yavuz's avatar Burak Yavuz Committed by Xiangrui Meng
Browse files

[SPARK-5507] Added documentation for BlockMatrix

Docs for BlockMatrix. mengxr

Author: Burak Yavuz <brkyvz@gmail.com>

Closes #4664 from brkyvz/SPARK-5507PR and squashes the following commits:

4db30b0 [Burak Yavuz] [SPARK-5507] Added documentation for BlockMatrix
parent 85e9d091
No related branches found
No related tags found
No related merge requests found
......@@ -296,6 +296,81 @@ backed by an RDD of its entries.
The underlying RDDs of a distributed matrix must be deterministic, because we cache the matrix size.
In general the use of non-deterministic RDDs can lead to errors.
### BlockMatrix
A `BlockMatrix` is a distributed matrix backed by an RDD of `MatrixBlock`s, where `MatrixBlock` is
a tuple of `((Int, Int), Matrix)`, where the `(Int, Int)` is the index of the block, and `Matrix` is
the sub-matrix at the given index with size `rowsPerBlock` x `colsPerBlock`.
`BlockMatrix` supports methods such as `.add` and `.multiply` with another `BlockMatrix`.
`BlockMatrix` also has a helper function `.validate` which can be used to debug whether the
`BlockMatrix` is set up properly.
<div class="codetabs">
<div data-lang="scala" markdown="1">
A [`BlockMatrix`](api/scala/index.html#org.apache.spark.mllib.linalg.distributed.BlockMatrix) can be
most easily created from an `IndexedRowMatrix` or `CoordinateMatrix` using `.toBlockMatrix()`.
`.toBlockMatrix()` will create blocks of size 1024 x 1024. Users may change the sizes of their blocks
by supplying the values through `.toBlockMatrix(rowsPerBlock, colsPerBlock)`.
{% highlight scala %}
import org.apache.spark.mllib.linalg.SingularValueDecomposition
import org.apache.spark.mllib.linalg.distributed.{BlockMatrix, CoordinateMatrix, MatrixEntry}
val entries: RDD[MatrixEntry] = ... // an RDD of (i, j, v) matrix entries
// Create a CoordinateMatrix from an RDD[MatrixEntry].
val coordMat: CoordinateMatrix = new CoordinateMatrix(entries)
// Transform the CoordinateMatrix to a BlockMatrix
val matA: BlockMatrix = coordMat.toBlockMatrix().cache()
// validate whether the BlockMatrix is set up properly. Throws an Exception when it is not valid.
// Nothing happens if it is valid.
matA.validate
// Calculate A^T A.
val AtransposeA = matA.transpose.multiply(matA)
// get SVD of 2 * A
val A2 = matA.add(matA)
val svd = A2.toIndexedRowMatrix().computeSVD(20, false, 1e-9)
{% endhighlight %}
</div>
<div data-lang="java" markdown="1">
A [`BlockMatrix`](api/scala/index.html#org.apache.spark.mllib.linalg.distributed.BlockMatrix) can be
most easily created from an `IndexedRowMatrix` or `CoordinateMatrix` using `.toBlockMatrix()`.
`.toBlockMatrix()` will create blocks of size 1024 x 1024. Users may change the sizes of their blocks
by supplying the values through `.toBlockMatrix(rowsPerBlock, colsPerBlock)`.
{% highlight java %}
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.mllib.linalg.SingularValueDecomposition;
import org.apache.spark.mllib.linalg.distributed.BlockMatrix;
import org.apache.spark.mllib.linalg.distributed.CoordinateMatrix;
import org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix;
JavaRDD<MatrixEntry> entries = ... // a JavaRDD of (i, j, v) Matrix Entries
// Create a CoordinateMatrix from a JavaRDD<MatrixEntry>.
CoordinateMatrix coordMat = new CoordinateMatrix(entries.rdd());
// Transform the CoordinateMatrix to a BlockMatrix
BlockMatrix matA = coordMat.toBlockMatrix().cache();
// validate whether the BlockMatrix is set up properly. Throws an Exception when it is not valid.
// Nothing happens if it is valid.
matA.validate();
// Calculate A^T A.
BlockMatrix AtransposeA = matA.transpose().multiply(matA);
// get SVD of 2 * A
BlockMatrix A2 = matA.add(matA);
SingularValueDecomposition<IndexedRowMatrix, Matrix> svd =
A2.toIndexedRowMatrix().computeSVD(20, false, 1e-9);
{% endhighlight %}
</div>
</div>
### RowMatrix
A `RowMatrix` is a row-oriented distributed matrix without meaningful row indices, backed by an RDD
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment