Skip to content
Snippets Groups Projects
Commit a74d743c authored by Nong Li's avatar Nong Li Committed by Reynold Xin
Browse files

[SPARK-12640][SQL] Add simple benchmarking utility class and add Parquet scan benchmarks.

[SPARK-12640][SQL] Add simple benchmarking utility class and add Parquet scan benchmarks.

We've run benchmarks ad hoc to measure the scanner performance. We will continue to invest in this
and it makes sense to get these benchmarks into code. This adds a simple benchmarking utility to do
this.

Author: Nong Li <nong@databricks.com>
Author: Nong <nongli@gmail.com>

Closes #10589 from nongli/spark-12640.
parent ac56cf60
No related branches found
No related tags found
No related merge requests found
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.util
import scala.collection.mutable
import org.apache.commons.lang3.SystemUtils
/**
* Utility class to benchmark components. An example of how to use this is:
* val benchmark = new Benchmark("My Benchmark", valuesPerIteration)
* benchmark.addCase("V1")(<function>)
* benchmark.addCase("V2")(<function>)
* benchmark.run
* This will output the average time to run each function and the rate of each function.
*
* The benchmark function takes one argument that is the iteration that's being run.
*
* If outputPerIteration is true, the timing for each run will be printed to stdout.
*/
private[spark] class Benchmark(
name: String, valuesPerIteration: Long,
iters: Int = 5,
outputPerIteration: Boolean = false) {
val benchmarks = mutable.ArrayBuffer.empty[Benchmark.Case]
def addCase(name: String)(f: Int => Unit): Unit = {
benchmarks += Benchmark.Case(name, f)
}
/**
* Runs the benchmark and outputs the results to stdout. This should be copied and added as
* a comment with the benchmark. Although the results vary from machine to machine, it should
* provide some baseline.
*/
def run(): Unit = {
require(benchmarks.nonEmpty)
// scalastyle:off
println("Running benchmark: " + name)
val results = benchmarks.map { c =>
println(" Running case: " + c.name)
Benchmark.measure(valuesPerIteration, iters, outputPerIteration)(c.fn)
}
println
val firstRate = results.head.avgRate
// The results are going to be processor specific so it is useful to include that.
println(Benchmark.getProcessorName())
printf("%-24s %16s %16s %14s\n", name + ":", "Avg Time(ms)", "Avg Rate(M/s)", "Relative Rate")
println("-------------------------------------------------------------------------")
results.zip(benchmarks).foreach { r =>
printf("%-24s %16s %16s %14s\n",
r._2.name,
"%10.2f" format r._1.avgMs,
"%10.2f" format r._1.avgRate,
"%6.2f X" format (r._1.avgRate / firstRate))
}
println
// scalastyle:on
}
}
private[spark] object Benchmark {
case class Case(name: String, fn: Int => Unit)
case class Result(avgMs: Double, avgRate: Double)
/**
* This should return a user helpful processor information. Getting at this depends on the OS.
* This should return something like "Intel(R) Core(TM) i7-4870HQ CPU @ 2.50GHz"
*/
def getProcessorName(): String = {
if (SystemUtils.IS_OS_MAC_OSX) {
Utils.executeAndGetOutput(Seq("/usr/sbin/sysctl", "-n", "machdep.cpu.brand_string"))
} else if (SystemUtils.IS_OS_LINUX) {
Utils.executeAndGetOutput(Seq("/usr/bin/grep", "-m", "1", "\"model name\"", "/proc/cpuinfo"))
} else {
System.getenv("PROCESSOR_IDENTIFIER")
}
}
/**
* Runs a single function `f` for iters, returning the average time the function took and
* the rate of the function.
*/
def measure(num: Long, iters: Int, outputPerIteration: Boolean)(f: Int => Unit): Result = {
var totalTime = 0L
for (i <- 0 until iters + 1) {
val start = System.nanoTime()
f(i)
val end = System.nanoTime()
if (i != 0) totalTime += end - start
if (outputPerIteration) {
// scalastyle:off
println(s"Iteration $i took ${(end - start) / 1000} microseconds")
// scalastyle:on
}
}
Result(totalTime.toDouble / 1000000 / iters, num * iters / (totalTime.toDouble / 1000))
}
}
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution.datasources.parquet
import java.io.File
import scala.collection.JavaConverters._
import scala.util.Try
import org.apache.spark.sql.{SQLConf, SQLContext}
import org.apache.spark.util.{Benchmark, Utils}
import org.apache.spark.{SparkConf, SparkContext}
/**
* Benchmark to measure parquet read performance.
* To run this:
* spark-submit --class <this class> --jars <spark sql test jar>
*/
object ParquetReadBenchmark {
val conf = new SparkConf()
conf.set("spark.sql.parquet.compression.codec", "snappy")
val sc = new SparkContext("local[1]", "test-sql-context", conf)
val sqlContext = new SQLContext(sc)
def withTempPath(f: File => Unit): Unit = {
val path = Utils.createTempDir()
path.delete()
try f(path) finally Utils.deleteRecursively(path)
}
def withTempTable(tableNames: String*)(f: => Unit): Unit = {
try f finally tableNames.foreach(sqlContext.dropTempTable)
}
def withSQLConf(pairs: (String, String)*)(f: => Unit): Unit = {
val (keys, values) = pairs.unzip
val currentValues = keys.map(key => Try(sqlContext.conf.getConfString(key)).toOption)
(keys, values).zipped.foreach(sqlContext.conf.setConfString)
try f finally {
keys.zip(currentValues).foreach {
case (key, Some(value)) => sqlContext.conf.setConfString(key, value)
case (key, None) => sqlContext.conf.unsetConf(key)
}
}
}
def intScanBenchmark(values: Int): Unit = {
withTempPath { dir =>
sqlContext.range(values).write.parquet(dir.getCanonicalPath)
withTempTable("tempTable") {
sqlContext.read.parquet(dir.getCanonicalPath).registerTempTable("tempTable")
val benchmark = new Benchmark("Single Int Column Scan", values)
benchmark.addCase("SQL Parquet Reader") { iter =>
sqlContext.sql("select sum(id) from tempTable").collect()
}
benchmark.addCase("SQL Parquet MR") { iter =>
withSQLConf(SQLConf.PARQUET_UNSAFE_ROW_RECORD_READER_ENABLED.key -> "false") {
sqlContext.sql("select sum(id) from tempTable").collect()
}
}
val files = SpecificParquetRecordReaderBase.listDirectory(dir).toArray
benchmark.addCase("ParquetReader") { num =>
var sum = 0L
files.map(_.asInstanceOf[String]).foreach { p =>
val reader = new UnsafeRowParquetRecordReader
reader.initialize(p, ("id" :: Nil).asJava)
while (reader.nextKeyValue()) {
val record = reader.getCurrentValue
if (!record.isNullAt(0)) sum += record.getInt(0)
}
reader.close()
}}
/*
Intel(R) Core(TM) i7-4870HQ CPU @ 2.50GHz
Single Int Column Scan: Avg Time(ms) Avg Rate(M/s) Relative Rate
-------------------------------------------------------------------------
SQL Parquet Reader 1910.0 13.72 1.00 X
SQL Parquet MR 2330.0 11.25 0.82 X
ParquetReader 1252.6 20.93 1.52 X
*/
benchmark.run()
}
}
}
def intStringScanBenchmark(values: Int): Unit = {
withTempPath { dir =>
withTempTable("t1", "tempTable") {
sqlContext.range(values).registerTempTable("t1")
sqlContext.sql("select id as c1, cast(id as STRING) as c2 from t1")
.write.parquet(dir.getCanonicalPath)
sqlContext.read.parquet(dir.getCanonicalPath).registerTempTable("tempTable")
val benchmark = new Benchmark("Int and String Scan", values)
benchmark.addCase("SQL Parquet Reader") { iter =>
sqlContext.sql("select sum(c1), sum(length(c2)) from tempTable").collect
}
benchmark.addCase("SQL Parquet MR") { iter =>
withSQLConf(SQLConf.PARQUET_UNSAFE_ROW_RECORD_READER_ENABLED.key -> "false") {
sqlContext.sql("select sum(c1), sum(length(c2)) from tempTable").collect
}
}
val files = SpecificParquetRecordReaderBase.listDirectory(dir).toArray
benchmark.addCase("ParquetReader") { num =>
var sum1 = 0L
var sum2 = 0L
files.map(_.asInstanceOf[String]).foreach { p =>
val reader = new UnsafeRowParquetRecordReader
reader.initialize(p, null)
while (reader.nextKeyValue()) {
val record = reader.getCurrentValue
if (!record.isNullAt(0)) sum1 += record.getInt(0)
if (!record.isNullAt(1)) sum2 += record.getUTF8String(1).numBytes()
}
reader.close()
}
}
/*
Intel(R) Core(TM) i7-4870HQ CPU @ 2.50GHz
Int and String Scan: Avg Time(ms) Avg Rate(M/s) Relative Rate
-------------------------------------------------------------------------
SQL Parquet Reader 2245.6 7.00 1.00 X
SQL Parquet MR 2914.2 5.40 0.77 X
ParquetReader 1544.6 10.18 1.45 X
*/
benchmark.run()
}
}
}
def main(args: Array[String]): Unit = {
intScanBenchmark(1024 * 1024 * 15)
intStringScanBenchmark(1024 * 1024 * 10)
}
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment