Skip to content
Snippets Groups Projects
Commit 9cb3ba10 authored by Yanbo Liang's avatar Yanbo Liang Committed by Xiangrui Meng
Browse files

[SPARK-14312][ML][SPARKR] NaiveBayes model persistence in SparkR

## What changes were proposed in this pull request?
SparkR ```NaiveBayesModel``` supports ```save/load``` by the following API:
```
df <- createDataFrame(sqlContext, infert)
model <- naiveBayes(education ~ ., df, laplace = 0)
ml.save(model, path)
model2 <- ml.load(path)
```

## How was this patch tested?
Add unit tests.

cc mengxr

Author: Yanbo Liang <ybliang8@gmail.com>

Closes #12573 from yanboliang/spark-14312.
parent 0c47e274
No related branches found
No related tags found
No related merge requests found
......@@ -107,7 +107,8 @@ exportMethods("arrange",
"write.jdbc",
"write.json",
"write.parquet",
"write.text")
"write.text",
"ml.save")
exportClasses("Column")
......@@ -299,7 +300,8 @@ export("as.DataFrame",
"tableNames",
"tables",
"uncacheTable",
"print.summary.GeneralizedLinearRegressionModel")
"print.summary.GeneralizedLinearRegressionModel",
"ml.load")
export("structField",
"structField.jobj",
......
......@@ -1200,3 +1200,7 @@ setGeneric("naiveBayes", function(formula, data, ...) { standardGeneric("naiveBa
#' @rdname survreg
#' @export
setGeneric("survreg", function(formula, data, ...) { standardGeneric("survreg") })
#' @rdname ml.save
#' @export
setGeneric("ml.save", function(object, path, ...) { standardGeneric("ml.save") })
......@@ -338,6 +338,54 @@ setMethod("naiveBayes", signature(formula = "formula", data = "SparkDataFrame"),
return(new("NaiveBayesModel", jobj = jobj))
})
#' Save the Bernoulli naive Bayes model to the input path.
#'
#' @param object A fitted Bernoulli naive Bayes model
#' @param path The directory where the model is saved
#' @param overwrite Overwrites or not if the output path already exists. Default is FALSE
#' which means throw exception if the output path exists.
#'
#' @rdname ml.save
#' @name ml.save
#' @export
#' @examples
#' \dontrun{
#' df <- createDataFrame(sqlContext, infert)
#' model <- naiveBayes(education ~ ., df, laplace = 0)
#' path <- "path/to/model"
#' ml.save(model, path)
#' }
setMethod("ml.save", signature(object = "NaiveBayesModel", path = "character"),
function(object, path, overwrite = FALSE) {
writer <- callJMethod(object@jobj, "write")
if (overwrite) {
writer <- callJMethod(writer, "overwrite")
}
invisible(callJMethod(writer, "save", path))
})
#' Load a fitted MLlib model from the input path.
#'
#' @param path Path of the model to read.
#' @return a fitted MLlib model
#' @rdname ml.load
#' @name ml.load
#' @export
#' @examples
#' \dontrun{
#' path <- "path/to/model"
#' model <- ml.load(path)
#' }
ml.load <- function(path) {
path <- suppressWarnings(normalizePath(path))
jobj <- callJStatic("org.apache.spark.ml.r.RWrappers", "load", path)
if (isInstanceOf(jobj, "org.apache.spark.ml.r.NaiveBayesWrapper")) {
return(new("NaiveBayesModel", jobj = jobj))
} else {
stop(paste("Unsupported model: ", jobj))
}
}
#' Fit an accelerated failure time (AFT) survival regression model.
#'
#' Fit an accelerated failure time (AFT) survival regression model, similarly to R's survreg().
......
......@@ -204,6 +204,18 @@ test_that("naiveBayes", {
"Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "No", "No",
"Yes", "Yes", "No", "No"))
# Test model save/load
modelPath <- tempfile(pattern = "naiveBayes", fileext = ".tmp")
ml.save(m, modelPath)
expect_error(ml.save(m, modelPath))
ml.save(m, modelPath, overwrite = TRUE)
m2 <- ml.load(modelPath)
s2 <- summary(m2)
expect_equal(s$apriori, s2$apriori)
expect_equal(s$tables, s2$tables)
unlink(modelPath)
# Test e1071::naiveBayes
if (requireNamespace("e1071", quietly = TRUE)) {
expect_that(m <- e1071::naiveBayes(Survived ~ ., data = t1), not(throws_error()))
......
......@@ -17,16 +17,23 @@
package org.apache.spark.ml.r
import org.apache.hadoop.fs.Path
import org.json4s._
import org.json4s.DefaultFormats
import org.json4s.JsonDSL._
import org.json4s.jackson.JsonMethods._
import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.attribute.{Attribute, AttributeGroup, NominalAttribute}
import org.apache.spark.ml.classification.{NaiveBayes, NaiveBayesModel}
import org.apache.spark.ml.feature.{IndexToString, RFormula}
import org.apache.spark.ml.util._
import org.apache.spark.sql.{DataFrame, Dataset}
private[r] class NaiveBayesWrapper private (
pipeline: PipelineModel,
val pipeline: PipelineModel,
val labels: Array[String],
val features: Array[String]) {
val features: Array[String]) extends MLWritable {
import NaiveBayesWrapper._
......@@ -41,9 +48,11 @@ private[r] class NaiveBayesWrapper private (
.drop(PREDICTED_LABEL_INDEX_COL)
.drop(naiveBayesModel.getFeaturesCol)
}
override def write: MLWriter = new NaiveBayesWrapper.NaiveBayesWrapperWriter(this)
}
private[r] object NaiveBayesWrapper {
private[r] object NaiveBayesWrapper extends MLReadable[NaiveBayesWrapper] {
val PREDICTED_LABEL_INDEX_COL = "pred_label_idx"
val PREDICTED_LABEL_COL = "prediction"
......@@ -74,4 +83,41 @@ private[r] object NaiveBayesWrapper {
.fit(data)
new NaiveBayesWrapper(pipeline, labels, features)
}
override def read: MLReader[NaiveBayesWrapper] = new NaiveBayesWrapperReader
override def load(path: String): NaiveBayesWrapper = super.load(path)
class NaiveBayesWrapperWriter(instance: NaiveBayesWrapper) extends MLWriter {
override protected def saveImpl(path: String): Unit = {
val rMetadataPath = new Path(path, "rMetadata").toString
val pipelinePath = new Path(path, "pipeline").toString
val rMetadata = ("class" -> instance.getClass.getName) ~
("labels" -> instance.labels.toSeq) ~
("features" -> instance.features.toSeq)
val rMetadataJson: String = compact(render(rMetadata))
sc.parallelize(Seq(rMetadataJson), 1).saveAsTextFile(rMetadataPath)
instance.pipeline.save(pipelinePath)
}
}
class NaiveBayesWrapperReader extends MLReader[NaiveBayesWrapper] {
override def load(path: String): NaiveBayesWrapper = {
implicit val format = DefaultFormats
val rMetadataPath = new Path(path, "rMetadata").toString
val pipelinePath = new Path(path, "pipeline").toString
val rMetadataStr = sc.textFile(rMetadataPath, 1).first()
val rMetadata = parse(rMetadataStr)
val labels = (rMetadata \ "labels").extract[Array[String]]
val features = (rMetadata \ "features").extract[Array[String]]
val pipeline = PipelineModel.load(pipelinePath)
new NaiveBayesWrapper(pipeline, labels, features)
}
}
}
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.ml.r
import org.apache.hadoop.fs.Path
import org.json4s.DefaultFormats
import org.json4s.jackson.JsonMethods._
import org.apache.spark.SparkException
import org.apache.spark.ml.util.MLReader
/**
* This is the Scala stub of SparkR ml.load. It will dispatch the call to corresponding
* model wrapper loading function according the class name extracted from rMetadata of the path.
*/
private[r] object RWrappers extends MLReader[Object] {
override def load(path: String): Object = {
implicit val format = DefaultFormats
val rMetadataPath = new Path(path, "rMetadata").toString
val rMetadataStr = sc.textFile(rMetadataPath, 1).first()
val rMetadata = parse(rMetadataStr)
val className = (rMetadata \ "class").extract[String]
className match {
case "org.apache.spark.ml.r.NaiveBayesWrapper" => NaiveBayesWrapper.load(path)
case _ =>
throw new SparkException(s"SparkR ml.load does not support load $className")
}
}
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment