Skip to content
Snippets Groups Projects
Commit 8df4dad4 authored by Davies Liu's avatar Davies Liu Committed by Josh Rosen
Browse files

[SPARK-2871] [PySpark] add approx API for RDD

RDD.countApprox(self, timeout, confidence=0.95)

        :: Experimental ::
        Approximate version of count() that returns a potentially incomplete
        result within a timeout, even if not all tasks have finished.

        >>> rdd = sc.parallelize(range(1000), 10)
        >>> rdd.countApprox(1000, 1.0)
        1000

RDD.sumApprox(self, timeout, confidence=0.95)

        Approximate operation to return the sum within a timeout
        or meet the confidence.

        >>> rdd = sc.parallelize(range(1000), 10)
        >>> r = sum(xrange(1000))
        >>> (rdd.sumApprox(1000) - r) / r < 0.05

RDD.meanApprox(self, timeout, confidence=0.95)

        :: Experimental ::
        Approximate operation to return the mean within a timeout
        or meet the confidence.

        >>> rdd = sc.parallelize(range(1000), 10)
        >>> r = sum(xrange(1000)) / 1000.0
        >>> (rdd.meanApprox(1000) - r) / r < 0.05
        True

Author: Davies Liu <davies.liu@gmail.com>

Closes #2095 from davies/approx and squashes the following commits:

e8c252b [Davies Liu] add approx API for RDD
parent db436e36
No related branches found
No related tags found
No related merge requests found
......@@ -749,6 +749,23 @@ private[spark] object PythonRDD extends Logging {
}
}
}
/**
* Convert an RDD of serialized Python objects to RDD of objects, that is usable by PySpark.
*/
def pythonToJava(pyRDD: JavaRDD[Array[Byte]], batched: Boolean): JavaRDD[Any] = {
pyRDD.rdd.mapPartitions { iter =>
val unpickle = new Unpickler
iter.flatMap { row =>
val obj = unpickle.loads(row)
if (batched) {
obj.asInstanceOf[JArrayList[_]]
} else {
Seq(obj)
}
}
}.toJavaRDD()
}
}
private
......
......@@ -131,6 +131,22 @@ class _JavaStackTrace(object):
self._context._jsc.setCallSite(None)
class BoundedFloat(float):
"""
Bounded value is generated by approximate job, with confidence and low
bound and high bound.
>>> BoundedFloat(100.0, 0.95, 95.0, 105.0)
100.0
"""
def __new__(cls, mean, confidence, low, high):
obj = float.__new__(cls, mean)
obj.confidence = confidence
obj.low = low
obj.high = high
return obj
class MaxHeapQ(object):
"""
......@@ -1792,6 +1808,71 @@ class RDD(object):
# keys in the pairs. This could be an expensive operation, since those
# hashes aren't retained.
def _is_pickled(self):
""" Return this RDD is serialized by Pickle or not. """
der = self._jrdd_deserializer
if isinstance(der, PickleSerializer):
return True
if isinstance(der, BatchedSerializer) and isinstance(der.serializer, PickleSerializer):
return True
return False
def _to_jrdd(self):
""" Return an JavaRDD of Object by unpickling
It will convert each Python object into Java object by Pyrolite, whenever the
RDD is serialized in batch or not.
"""
if not self._is_pickled():
self = self._reserialize(BatchedSerializer(PickleSerializer(), 1024))
batched = isinstance(self._jrdd_deserializer, BatchedSerializer)
return self.ctx._jvm.PythonRDD.pythonToJava(self._jrdd, batched)
def countApprox(self, timeout, confidence=0.95):
"""
:: Experimental ::
Approximate version of count() that returns a potentially incomplete
result within a timeout, even if not all tasks have finished.
>>> rdd = sc.parallelize(range(1000), 10)
>>> rdd.countApprox(1000, 1.0)
1000
"""
drdd = self.mapPartitions(lambda it: [float(sum(1 for i in it))])
return int(drdd.sumApprox(timeout, confidence))
def sumApprox(self, timeout, confidence=0.95):
"""
:: Experimental ::
Approximate operation to return the sum within a timeout
or meet the confidence.
>>> rdd = sc.parallelize(range(1000), 10)
>>> r = sum(xrange(1000))
>>> (rdd.sumApprox(1000) - r) / r < 0.05
True
"""
jrdd = self.mapPartitions(lambda it: [float(sum(it))])._to_jrdd()
jdrdd = self.ctx._jvm.JavaDoubleRDD.fromRDD(jrdd.rdd())
r = jdrdd.sumApprox(timeout, confidence).getFinalValue()
return BoundedFloat(r.mean(), r.confidence(), r.low(), r.high())
def meanApprox(self, timeout, confidence=0.95):
"""
:: Experimental ::
Approximate operation to return the mean within a timeout
or meet the confidence.
>>> rdd = sc.parallelize(range(1000), 10)
>>> r = sum(xrange(1000)) / 1000.0
>>> (rdd.meanApprox(1000) - r) / r < 0.05
True
"""
jrdd = self.map(float)._to_jrdd()
jdrdd = self.ctx._jvm.JavaDoubleRDD.fromRDD(jrdd.rdd())
r = jdrdd.meanApprox(timeout, confidence).getFinalValue()
return BoundedFloat(r.mean(), r.confidence(), r.low(), r.high())
class PipelinedRDD(RDD):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment