Skip to content
Snippets Groups Projects
Commit 8c06a5fa authored by WangTao's avatar WangTao Committed by Thomas Graves
Browse files

[SPARK-5336][YARN]spark.executor.cores must not be less than spark.task.cpus

https://issues.apache.org/jira/browse/SPARK-5336

Author: WangTao <barneystinson@aliyun.com>
Author: WangTaoTheTonic <barneystinson@aliyun.com>

Closes #4123 from WangTaoTheTonic/SPARK-5336 and squashes the following commits:

6c9676a [WangTao] Update ClientArguments.scala
9632d3a [WangTaoTheTonic] minor comment fix
d03d6fa [WangTaoTheTonic] import ordering should be alphabetical'
3112af9 [WangTao] spark.executor.cores must not be less than spark.task.cpus
parent 424d8c6f
No related branches found
No related tags found
No related merge requests found
......@@ -158,7 +158,7 @@ private[spark] class ExecutorAllocationManager(
"shuffle service. You may enable this through spark.shuffle.service.enabled.")
}
if (tasksPerExecutor == 0) {
throw new SparkException("spark.executor.cores must not be less than spark.task.cpus.cores")
throw new SparkException("spark.executor.cores must not be less than spark.task.cpus.")
}
}
......
......@@ -168,7 +168,7 @@ private[spark] class TaskSchedulerImpl(
if (!hasLaunchedTask) {
logWarning("Initial job has not accepted any resources; " +
"check your cluster UI to ensure that workers are registered " +
"and have sufficient memory")
"and have sufficient resources")
} else {
this.cancel()
}
......
......@@ -19,9 +19,9 @@ package org.apache.spark.deploy.yarn
import scala.collection.mutable.ArrayBuffer
import org.apache.spark.SparkConf
import org.apache.spark.{SparkConf, SparkException}
import org.apache.spark.deploy.yarn.YarnSparkHadoopUtil._
import org.apache.spark.util.{Utils, IntParam, MemoryParam}
import org.apache.spark.util.{IntParam, MemoryParam, Utils}
// TODO: Add code and support for ensuring that yarn resource 'tasks' are location aware !
private[spark] class ClientArguments(args: Array[String], sparkConf: SparkConf) {
......@@ -95,6 +95,10 @@ private[spark] class ClientArguments(args: Array[String], sparkConf: SparkConf)
throw new IllegalArgumentException(
"You must specify at least 1 executor!\n" + getUsageMessage())
}
if (executorCores < sparkConf.getInt("spark.task.cpus", 1)) {
throw new SparkException("Executor cores must not be less than " +
"spark.task.cpus.")
}
if (isClusterMode) {
for (key <- Seq(amMemKey, amMemOverheadKey, amCoresKey)) {
if (sparkConf.contains(key)) {
......@@ -222,7 +226,7 @@ private[spark] class ClientArguments(args: Array[String], sparkConf: SparkConf)
| --arg ARG Argument to be passed to your application's main class.
| Multiple invocations are possible, each will be passed in order.
| --num-executors NUM Number of executors to start (Default: 2)
| --executor-cores NUM Number of cores for the executors (Default: 1).
| --executor-cores NUM Number of cores per executor (Default: 1).
| --driver-memory MEM Memory for driver (e.g. 1000M, 2G) (Default: 512 Mb)
| --driver-cores NUM Number of cores used by the driver (Default: 1).
| --executor-memory MEM Memory per executor (e.g. 1000M, 2G) (Default: 1G)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment