Skip to content
Snippets Groups Projects
Commit 859f7249 authored by Jacky Li's avatar Jacky Li Committed by Xiangrui Meng
Browse files

[SPARK-4001][MLlib] adding parallel FP-Growth algorithm for frequent pattern mining in MLlib

Apriori is the classic algorithm for frequent item set mining in a transactional data set. It will be useful if Apriori algorithm is added to MLLib in Spark. This PR add an implementation for it.
There is a point I am not sure wether it is most efficient. In order to filter out the eligible frequent item set, currently I am using a cartesian operation on two RDDs to calculate the degree of support of each item set, not sure wether it is better to use broadcast variable to achieve the same.

I will add an example to use this algorithm if requires

Author: Jacky Li <jacky.likun@huawei.com>
Author: Jacky Li <jackylk@users.noreply.github.com>
Author: Xiangrui Meng <meng@databricks.com>

Closes #2847 from jackylk/apriori and squashes the following commits:

bee3093 [Jacky Li] Merge pull request #1 from mengxr/SPARK-4001
7e69725 [Xiangrui Meng] simplify FPTree and update FPGrowth
ec21f7d [Jacky Li] fix scalastyle
93f3280 [Jacky Li] create FPTree class
d110ab2 [Jacky Li] change test case to use MLlibTestSparkContext
a6c5081 [Jacky Li] Add Parallel FPGrowth algorithm
eb3e4ca [Jacky Li] add FPGrowth
03df2b6 [Jacky Li] refactory according to comments
7b77ad7 [Jacky Li] fix scalastyle check
f68a0bd [Jacky Li] add 2 apriori implemenation and fp-growth implementation
889b33f [Jacky Li] modify per scalastyle check
da2cba7 [Jacky Li] adding apriori algorithm for frequent item set mining in Spark
parent d85cd4eb
No related branches found
No related tags found
No related merge requests found
Loading
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment