Skip to content
Snippets Groups Projects
Commit 84454d7d authored by bravo-zhang's avatar bravo-zhang Committed by gatorsmile
Browse files

[SPARK-14932][SQL] Allow DataFrame.replace() to replace values with None

## What changes were proposed in this pull request?

Currently `df.na.replace("*", Map[String, String]("NULL" -> null))` will produce exception.
This PR enables passing null/None as value in the replacement map in DataFrame.replace().
Note that the replacement map keys and values should still be the same type, while the values can have a mix of null/None and that type.
This PR enables following operations for example:
`df.na.replace("*", Map[String, String]("NULL" -> null))`(scala)
`df.na.replace("*", Map[Any, Any](60 -> null, 70 -> 80))`(scala)
`df.na.replace('Alice', None)`(python)
`df.na.replace([10, 20])`(python, replacing with None is by default)
One use case could be: I want to replace all the empty strings with null/None because they were incorrectly generated and then drop all null/None data
`df.na.replace("*", Map("" -> null)).na.drop()`(scala)
`df.replace(u'', None).dropna()`(python)

## How was this patch tested?

Scala unit test.
Python doctest and unit test.

Author: bravo-zhang <mzhang1230@gmail.com>

Closes #18820 from bravo-zhang/spark-14932.
parent c06f3f5a
No related branches found
No related tags found
No related merge requests found
Loading
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment