Skip to content
Snippets Groups Projects
Commit 828aff74 authored by Matei Zaharia's avatar Matei Zaharia
Browse files

Merge pull request #776 from gingsmith/master

adding matrix factorization data generator
parents 8b277892 bf7033f3
No related branches found
No related tags found
No related merge requests found
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package spark.mllib.recommendation
import scala.util.Random
import org.jblas.DoubleMatrix
import spark.{RDD, SparkContext}
import spark.mllib.util.MLUtils
/**
* Generate RDD(s) containing data for Matrix Factorization.
*
* This method samples training entries according to the oversampling factor
* 'trainSampFact', which is a multiplicative factor of the number of
* degrees of freedom of the matrix: rank*(m+n-rank).
*
* It optionally samples entries for a testing matrix using
* 'testSampFact', the percentage of the number of training entries
* to use for testing.
*
* This method takes the following inputs:
* sparkMaster (String) The master URL.
* outputPath (String) Directory to save output.
* m (Int) Number of rows in data matrix.
* n (Int) Number of columns in data matrix.
* rank (Int) Underlying rank of data matrix.
* trainSampFact (Double) Oversampling factor.
* noise (Boolean) Whether to add gaussian noise to training data.
* sigma (Double) Standard deviation of added gaussian noise.
* test (Boolean) Whether to create testing RDD.
* testSampFact (Double) Percentage of training data to use as test data.
*/
object MFDataGenerator{
def main(args: Array[String]) {
if (args.length < 2) {
println("Usage: MFDataGenerator " +
"<master> <outputDir> [m] [n] [rank] [trainSampFact] [noise] [sigma] [test] [testSampFact]")
System.exit(1)
}
val sparkMaster: String = args(0)
val outputPath: String = args(1)
val m: Int = if (args.length > 2) args(2).toInt else 100
val n: Int = if (args.length > 3) args(3).toInt else 100
val rank: Int = if (args.length > 4) args(4).toInt else 10
val trainSampFact: Double = if (args.length > 5) args(5).toDouble else 1.0
val noise: Boolean = if (args.length > 6) args(6).toBoolean else false
val sigma: Double = if (args.length > 7) args(7).toDouble else 0.1
val test: Boolean = if (args.length > 8) args(8).toBoolean else false
val testSampFact: Double = if (args.length > 9) args(9).toDouble else 0.1
val sc = new SparkContext(sparkMaster, "MFDataGenerator")
val A = DoubleMatrix.randn(m, rank)
val B = DoubleMatrix.randn(rank, n)
val z = 1 / (scala.math.sqrt(scala.math.sqrt(rank)))
A.mmuli(z)
B.mmuli(z)
val fullData = A.mmul(B)
val df = rank * (m + n - rank)
val sampSize = scala.math.min(scala.math.round(trainSampFact * df),
scala.math.round(.99 * m * n)).toInt
val rand = new Random()
val mn = m * n
val shuffled = rand.shuffle(1 to mn toIterable)
val omega = shuffled.slice(0, sampSize)
val ordered = omega.sortWith(_ < _).toArray
val trainData: RDD[(Int, Int, Double)] = sc.parallelize(ordered)
.map(x => (fullData.indexRows(x - 1), fullData.indexColumns(x - 1), fullData.get(x - 1)))
// optionally add gaussian noise
if (noise) {
trainData.map(x => (x._1, x._2, x._3 + rand.nextGaussian * sigma))
}
trainData.map(x => x._1 + "," + x._2 + "," + x._3).saveAsTextFile(outputPath)
// optionally generate testing data
if (test) {
val testSampSize = scala.math
.min(scala.math.round(sampSize * testSampFact),scala.math.round(mn - sampSize)).toInt
val testOmega = shuffled.slice(sampSize, sampSize + testSampSize)
val testOrdered = testOmega.sortWith(_ < _).toArray
val testData: RDD[(Int, Int, Double)] = sc.parallelize(testOrdered)
.map(x => (fullData.indexRows(x - 1), fullData.indexColumns(x - 1), fullData.get(x - 1)))
testData.map(x => x._1 + "," + x._2 + "," + x._3).saveAsTextFile(outputPath)
}
sc.stop()
}
}
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment