Skip to content
Snippets Groups Projects
Commit 826e1e30 authored by Sean Owen's avatar Sean Owen Committed by Xiangrui Meng
Browse files

[SPARK-11302][MLLIB] 2) Multivariate Gaussian Model with Covariance matrix...

[SPARK-11302][MLLIB] 2) Multivariate Gaussian Model with Covariance matrix returns incorrect answer in some cases

Fix computation of root-sigma-inverse in multivariate Gaussian; add a test and fix related Python mixture model test.

Supersedes https://github.com/apache/spark/pull/9293

Author: Sean Owen <sowen@cloudera.com>

Closes #9309 from srowen/SPARK-11302.2.
parent d9c60398
No related branches found
No related tags found
No related merge requests found
......@@ -56,7 +56,7 @@ class MultivariateGaussian @Since("1.3.0") (
/**
* Compute distribution dependent constants:
* rootSigmaInv = D^(-1/2)^ * U, where sigma = U * D * U.t
* rootSigmaInv = D^(-1/2)^ * U.t, where sigma = U * D * U.t
* u = log((2*pi)^(-k/2)^ * det(sigma)^(-1/2)^)
*/
private val (rootSigmaInv: DBM[Double], u: Double) = calculateCovarianceConstants
......@@ -104,11 +104,11 @@ class MultivariateGaussian @Since("1.3.0") (
*
* sigma = U * D * U.t
* inv(Sigma) = U * inv(D) * U.t
* = (D^{-1/2}^ * U).t * (D^{-1/2}^ * U)
* = (D^{-1/2}^ * U.t).t * (D^{-1/2}^ * U.t)
*
* and thus
*
* -0.5 * (x-mu).t * inv(Sigma) * (x-mu) = -0.5 * norm(D^{-1/2}^ * U * (x-mu))^2^
* -0.5 * (x-mu).t * inv(Sigma) * (x-mu) = -0.5 * norm(D^{-1/2}^ * U.t * (x-mu))^2^
*
* To guard against singular covariance matrices, this method computes both the
* pseudo-determinant and the pseudo-inverse (Moore-Penrose). Singular values are considered
......@@ -130,7 +130,7 @@ class MultivariateGaussian @Since("1.3.0") (
// by inverting the square root of all non-zero values
val pinvS = diag(new DBV(d.map(v => if (v > tol) math.sqrt(1.0 / v) else 0.0).toArray))
(pinvS * u, -0.5 * (mu.size * math.log(2.0 * math.Pi) + logPseudoDetSigma))
(pinvS * u.t, -0.5 * (mu.size * math.log(2.0 * math.Pi) + logPseudoDetSigma))
} catch {
case uex: UnsupportedOperationException =>
throw new IllegalArgumentException("Covariance matrix has no non-zero singular values")
......
......@@ -65,4 +65,19 @@ class MultivariateGaussianSuite extends SparkFunSuite with MLlibTestSparkContext
assert(dist.pdf(x1) ~== 0.11254 absTol 1E-5)
assert(dist.pdf(x2) ~== 0.068259 absTol 1E-5)
}
test("SPARK-11302") {
val x = Vectors.dense(629, 640, 1.7188, 618.19)
val mu = Vectors.dense(
1055.3910505836575, 1070.489299610895, 1.39020554474708, 1040.5907503867697)
val sigma = Matrices.dense(4, 4, Array(
166769.00466698944, 169336.6705268059, 12.820670788921873, 164243.93314092053,
169336.6705268059, 172041.5670061245, 21.62590020524533, 166678.01075856484,
12.820670788921873, 21.62590020524533, 0.872524191943962, 4.283255814732373,
164243.93314092053, 166678.01075856484, 4.283255814732373, 161848.9196719207))
val dist = new MultivariateGaussian(mu, sigma)
// Agrees with R's dmvnorm: 7.154782e-05
assert(dist.pdf(x) ~== 7.154782224045512E-5 absTol 1E-9)
}
}
......@@ -236,9 +236,9 @@ class GaussianMixtureModel(JavaModelWrapper, JavaSaveable, JavaLoader):
>>> model = GaussianMixture.train(clusterdata_2, 2, convergenceTol=0.0001,
... maxIterations=150, seed=10)
>>> labels = model.predict(clusterdata_2).collect()
>>> labels[0]==labels[1]==labels[2]
>>> labels[0]==labels[1]
True
>>> labels[3]==labels[4]
>>> labels[2]==labels[3]==labels[4]
True
.. versionadded:: 1.3.0
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment