Skip to content
Snippets Groups Projects
Commit 7b6dc29d authored by Yu ISHIKAWA's avatar Yu ISHIKAWA Committed by Joseph K. Bradley
Browse files

[SPARK-6518][MLLIB][EXAMPLE][DOC] Add example code and user guide for bisecting k-means

This PR includes only an example code in order to finish it quickly.
I'll send another PR for the docs soon.

Author: Yu ISHIKAWA <yuu.ishikawa@gmail.com>

Closes #9952 from yu-iskw/SPARK-6518.
parent ad8c1f0b
No related branches found
No related tags found
No related merge requests found
......@@ -718,6 +718,41 @@ sameModel = LDAModel.load(sc, "myModelPath")
</div>
## Bisecting k-means
Bisecting K-means can often be much faster than regular K-means, but it will generally produce a different clustering.
Bisecting k-means is a kind of [hierarchical clustering](https://en.wikipedia.org/wiki/Hierarchical_clustering).
Hierarchical clustering is one of the most commonly used method of cluster analysis which seeks to build a hierarchy of clusters.
Strategies for hierarchical clustering generally fall into two types:
- Agglomerative: This is a "bottom up" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.
- Divisive: This is a "top down" approach: all observations start in one cluster, and splits are performed recursively as one moves down the hierarchy.
Bisecting k-means algorithm is a kind of divisive algorithms.
The implementation in MLlib has the following parameters:
* *k*: the desired number of leaf clusters (default: 4). The actual number could be smaller if there are no divisible leaf clusters.
* *maxIterations*: the max number of k-means iterations to split clusters (default: 20)
* *minDivisibleClusterSize*: the minimum number of points (if >= 1.0) or the minimum proportion of points (if < 1.0) of a divisible cluster (default: 1)
* *seed*: a random seed (default: hash value of the class name)
**Examples**
<div class="codetabs">
<div data-lang="scala" markdown="1">
Refer to the [`BisectingKMeans` Scala docs](api/scala/index.html#org.apache.spark.mllib.clustering.BisectingKMeans) and [`BisectingKMeansModel` Scala docs](api/scala/index.html#org.apache.spark.mllib.clustering.BisectingKMeansModel) for details on the API.
{% include_example scala/org/apache/spark/examples/mllib/BisectingKMeansExample.scala %}
</div>
<div data-lang="java" markdown="1">
Refer to the [`BisectingKMeans` Java docs](api/java/org/apache/spark/mllib/clustering/BisectingKMeans.html) and [`BisectingKMeansModel` Java docs](api/java/org/apache/spark/mllib/clustering/BisectingKMeansModel.html) for details on the API.
{% include_example java/org/apache/spark/examples/mllib/JavaBisectingKMeansExample.java %}
</div>
</div>
## Streaming k-means
When data arrive in a stream, we may want to estimate clusters dynamically,
......
......@@ -49,6 +49,7 @@ We list major functionality from both below, with links to detailed guides.
* [Gaussian mixture](mllib-clustering.html#gaussian-mixture)
* [power iteration clustering (PIC)](mllib-clustering.html#power-iteration-clustering-pic)
* [latent Dirichlet allocation (LDA)](mllib-clustering.html#latent-dirichlet-allocation-lda)
* [bisecting k-means](mllib-clustering.html#bisecting-kmeans)
* [streaming k-means](mllib-clustering.html#streaming-k-means)
* [Dimensionality reduction](mllib-dimensionality-reduction.html)
* [singular value decomposition (SVD)](mllib-dimensionality-reduction.html#singular-value-decomposition-svd)
......
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.mllib;
import java.util.ArrayList;
// $example on$
import com.google.common.collect.Lists;
// $example off$
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
// $example on$
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.mllib.clustering.BisectingKMeans;
import org.apache.spark.mllib.clustering.BisectingKMeansModel;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors;
// $example off$
/**
* Java example for graph clustering using power iteration clustering (PIC).
*/
public class JavaBisectingKMeansExample {
public static void main(String[] args) {
SparkConf sparkConf = new SparkConf().setAppName("JavaBisectingKMeansExample");
JavaSparkContext sc = new JavaSparkContext(sparkConf);
// $example on$
ArrayList<Vector> localData = Lists.newArrayList(
Vectors.dense(0.1, 0.1), Vectors.dense(0.3, 0.3),
Vectors.dense(10.1, 10.1), Vectors.dense(10.3, 10.3),
Vectors.dense(20.1, 20.1), Vectors.dense(20.3, 20.3),
Vectors.dense(30.1, 30.1), Vectors.dense(30.3, 30.3)
);
JavaRDD<Vector> data = sc.parallelize(localData, 2);
BisectingKMeans bkm = new BisectingKMeans()
.setK(4);
BisectingKMeansModel model = bkm.run(data);
System.out.println("Compute Cost: " + model.computeCost(data));
for (Vector center: model.clusterCenters()) {
System.out.println("");
}
Vector[] clusterCenters = model.clusterCenters();
for (int i = 0; i < clusterCenters.length; i++) {
Vector clusterCenter = clusterCenters[i];
System.out.println("Cluster Center " + i + ": " + clusterCenter);
}
// $example off$
sc.stop();
}
}
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.mllib
// scalastyle:off println
// $example on$
import org.apache.spark.mllib.clustering.BisectingKMeans
import org.apache.spark.mllib.linalg.{Vector, Vectors}
// $example off$
import org.apache.spark.{SparkConf, SparkContext}
/**
* An example demonstrating a bisecting k-means clustering in spark.mllib.
*
* Run with
* {{{
* bin/run-example mllib.BisectingKMeansExample
* }}}
*/
object BisectingKMeansExample {
def main(args: Array[String]) {
val sparkConf = new SparkConf().setAppName("mllib.BisectingKMeansExample")
val sc = new SparkContext(sparkConf)
// $example on$
// Loads and parses data
def parse(line: String): Vector = Vectors.dense(line.split(" ").map(_.toDouble))
val data = sc.textFile("data/mllib/kmeans_data.txt").map(parse).cache()
// Clustering the data into 6 clusters by BisectingKMeans.
val bkm = new BisectingKMeans().setK(6)
val model = bkm.run(data)
// Show the compute cost and the cluster centers
println(s"Compute Cost: ${model.computeCost(data)}")
model.clusterCenters.zipWithIndex.foreach { case (center, idx) =>
println(s"Cluster Center ${idx}: ${center}")
}
// $example off$
sc.stop()
}
}
// scalastyle:on println
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment