Skip to content
Snippets Groups Projects
Commit 79ff8536 authored by Peng's avatar Peng Committed by Yanbo Liang
Browse files

[SPARK-17645][MLLIB][ML] add feature selector method based on: False Discovery...

[SPARK-17645][MLLIB][ML] add feature selector method based on: False Discovery Rate (FDR) and Family wise error rate (FWE)

## What changes were proposed in this pull request?

Univariate feature selection works by selecting the best features based on univariate statistical tests.
FDR and FWE are a popular univariate statistical test for feature selection.
In 2005, the Benjamini and Hochberg paper on FDR was identified as one of the 25 most-cited statistical papers. The FDR uses the Benjamini-Hochberg procedure in this PR. https://en.wikipedia.org/wiki/False_discovery_rate.
In statistics, FWE is the probability of making one or more false discoveries, or type I errors, among all the hypotheses when performing multiple hypotheses tests.
https://en.wikipedia.org/wiki/Family-wise_error_rate

We add  FDR and FWE methods for ChiSqSelector in this PR, like it is implemented in scikit-learn.
http://scikit-learn.org/stable/modules/feature_selection.html#univariate-feature-selection
## How was this patch tested?

ut will be added soon

(Please explain how this patch was tested. E.g. unit tests, integration tests, manual tests)

(If this patch involves UI changes, please attach a screenshot; otherwise, remove this)

Author: Peng <peng.meng@intel.com>
Author: Peng, Meng <peng.meng@intel.com>

Closes #15212 from mpjlu/fdr_fwe.
parent 2af8b5cf
No related branches found
No related tags found
No related merge requests found
Loading
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment