Skip to content
Snippets Groups Projects
Commit 76077bf9 authored by Andre Schumacher's avatar Andre Schumacher
Browse files

Implementing SPARK-838: Add DoubleRDDFunctions methods to PySpark

parent 53b1c306
No related branches found
No related tags found
No related merge requests found
......@@ -31,6 +31,7 @@ from pyspark.serializers import batched, Batch, dump_pickle, load_pickle, \
read_from_pickle_file
from pyspark.join import python_join, python_left_outer_join, \
python_right_outer_join, python_cogroup
from pyspark.statcounter import StatCounter
from py4j.java_collections import ListConverter, MapConverter
......@@ -357,6 +358,63 @@ class RDD(object):
3
"""
return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
def stats(self):
"""
Return a L{StatCounter} object that captures the mean, variance
and count of the RDD's elements in one operation.
"""
def redFunc(left_counter, right_counter):
return left_counter.mergeStats(right_counter)
return self.mapPartitions(lambda i: [StatCounter(i)]).reduce(redFunc)
def mean(self):
"""
Compute the mean of this RDD's elements.
>>> sc.parallelize([1, 2, 3]).mean()
2.0
"""
return self.stats().mean()
def variance(self):
"""
Compute the variance of this RDD's elements.
>>> sc.parallelize([1, 2, 3]).variance()
0.666...
"""
return self.stats().variance()
def stdev(self):
"""
Compute the standard deviation of this RDD's elements.
>>> sc.parallelize([1, 2, 3]).stdev()
0.816...
"""
return self.stats().stdev()
def sampleStdev(self):
"""
Compute the sample standard deviation of this RDD's elements (which corrects for bias in
estimating the standard deviation by dividing by N-1 instead of N).
>>> sc.parallelize([1, 2, 3]).sampleStdev()
1.0
"""
return self.stats().sampleStdev()
def sampleVariance(self):
"""
Compute the sample variance of this RDD's elements (which corrects for bias in
estimating the variance by dividing by N-1 instead of N).
>>> sc.parallelize([1, 2, 3]).sampleVariance()
1.0
"""
return self.stats().sampleVariance()
def countByValue(self):
"""
......@@ -777,7 +835,7 @@ def _test():
# The small batch size here ensures that we see multiple batches,
# even in these small test examples:
globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2)
(failure_count, test_count) = doctest.testmod(globs=globs)
(failure_count, test_count) = doctest.testmod(globs=globs,optionflags=doctest.ELLIPSIS)
globs['sc'].stop()
if failure_count:
exit(-1)
......
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file is ported from spark/util/StatCounter.scala
import copy
import math
class StatCounter(object):
def __init__(self, values=[]):
self.n = 0L # Running count of our values
self.mu = 0.0 # Running mean of our values
self.m2 = 0.0 # Running variance numerator (sum of (x - mean)^2)
for v in values:
self.merge(v)
# Add a value into this StatCounter, updating the internal statistics.
def merge(self, value):
delta = value - self.mu
self.n += 1
self.mu += delta / self.n
self.m2 += delta * (value - self.mu)
return self
# Merge another StatCounter into this one, adding up the internal statistics.
def mergeStats(self, other):
if not isinstance(other, StatCounter):
raise Exception("Can only merge Statcounters!")
if other is self: # reference equality holds
self.merge(copy.deepcopy(other)) # Avoid overwriting fields in a weird order
else:
if self.n == 0:
self.mu = other.mu
self.m2 = other.m2
self.n = other.n
elif other.n != 0:
delta = other.mu - self.mu
if other.n * 10 < self.n:
self.mu = self.mu + (delta * other.n) / (self.n + other.n)
elif self.n * 10 < other.n:
self.mu = other.mu - (delta * self.n) / (self.n + other.n)
else:
self.mu = (self.mu * self.n + other.mu * other.n) / (self.n + other.n)
self.m2 += other.m2 + (delta * delta * self.n * other.n) / (self.n + other.n)
self.n += other.n
return self
# Clone this StatCounter
def copy(self):
return copy.deepcopy(self)
def count(self):
return self.n
def mean(self):
return self.mu
def sum(self):
return self.n * self.mu
# Return the variance of the values.
def variance(self):
if self.n == 0:
return float('nan')
else:
return self.m2 / self.n
#
# Return the sample variance, which corrects for bias in estimating the variance by dividing
# by N-1 instead of N.
#
def sampleVariance(self):
if self.n <= 1:
return float('nan')
else:
return self.m2 / (self.n - 1)
# Return the standard deviation of the values.
def stdev(self):
return math.sqrt(self.variance())
#
# Return the sample standard deviation of the values, which corrects for bias in estimating the
# variance by dividing by N-1 instead of N.
#
def sampleStdev(self):
return math.sqrt(self.sampleVariance())
def __repr__(self):
return "(count: %s, mean: %s, stdev: %s)" % (self.count(), self.mean(), self.stdev())
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment