Skip to content
Snippets Groups Projects
Commit 74a293f4 authored by Eric Liang's avatar Eric Liang Committed by Xiangrui Meng
Browse files

[SPARK-9713] [ML] Document SparkR MLlib glm() integration in Spark 1.5

This documents the use of R model formulae in the SparkR guide. Also fixes some bugs in the R api doc.

mengxr

Author: Eric Liang <ekl@databricks.com>

Closes #8085 from ericl/docs.
parent 3ef0f329
No related branches found
No related tags found
No related merge requests found
......@@ -535,8 +535,8 @@ setGeneric("showDF", function(x,...) { standardGeneric("showDF") })
#' @export
setGeneric("summarize", function(x,...) { standardGeneric("summarize") })
##' rdname summary
##' @export
#' @rdname summary
#' @export
setGeneric("summary", function(x, ...) { standardGeneric("summary") })
# @rdname tojson
......
......@@ -56,10 +56,10 @@ setMethod("glm", signature(formula = "formula", family = "ANY", data = "DataFram
#'
#' Makes predictions from a model produced by glm(), similarly to R's predict().
#'
#' @param model A fitted MLlib model
#' @param object A fitted MLlib model
#' @param newData DataFrame for testing
#' @return DataFrame containing predicted values
#' @rdname glm
#' @rdname predict
#' @export
#' @examples
#'\dontrun{
......@@ -76,10 +76,10 @@ setMethod("predict", signature(object = "PipelineModel"),
#'
#' Returns the summary of a model produced by glm(), similarly to R's summary().
#'
#' @param model A fitted MLlib model
#' @param x A fitted MLlib model
#' @return a list with a 'coefficient' component, which is the matrix of coefficients. See
#' summary.glm for more information.
#' @rdname glm
#' @rdname summary
#' @export
#' @examples
#'\dontrun{
......
......@@ -11,7 +11,8 @@ title: SparkR (R on Spark)
SparkR is an R package that provides a light-weight frontend to use Apache Spark from R.
In Spark {{site.SPARK_VERSION}}, SparkR provides a distributed data frame implementation that
supports operations like selection, filtering, aggregation etc. (similar to R data frames,
[dplyr](https://github.com/hadley/dplyr)) but on large datasets.
[dplyr](https://github.com/hadley/dplyr)) but on large datasets. SparkR also supports distributed
machine learning using MLlib.
# SparkR DataFrames
......@@ -230,3 +231,37 @@ head(teenagers)
{% endhighlight %}
</div>
# Machine Learning
SparkR allows the fitting of generalized linear models over DataFrames using the [glm()](api/R/glm.html) function. Under the hood, SparkR uses MLlib to train a model of the specified family. Currently the gaussian and binomial families are supported. We support a subset of the available R formula operators for model fitting, including '~', '.', '+', and '-'. The example below shows the use of building a gaussian GLM model using SparkR.
<div data-lang="r" markdown="1">
{% highlight r %}
# Create the DataFrame
df <- createDataFrame(sqlContext, iris)
# Fit a linear model over the dataset.
model <- glm(Sepal_Length ~ Sepal_Width + Species, data = df, family = "gaussian")
# Model coefficients are returned in a similar format to R's native glm().
summary(model)
##$coefficients
## Estimate
##(Intercept) 2.2513930
##Sepal_Width 0.8035609
##Species_versicolor 1.4587432
##Species_virginica 1.9468169
# Make predictions based on the model.
predictions <- predict(model, newData = df)
head(select(predictions, "Sepal_Length", "prediction"))
## Sepal_Length prediction
##1 5.1 5.063856
##2 4.9 4.662076
##3 4.7 4.822788
##4 4.6 4.742432
##5 5.0 5.144212
##6 5.4 5.385281
{% endhighlight %}
</div>
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment