Skip to content
Snippets Groups Projects
Commit 6ceb1696 authored by Reynold Xin's avatar Reynold Xin Committed by Michael Armbrust
Browse files

[SPARK-8300] DataFrame hint for broadcast join.

Users can now do
```scala
left.join(broadcast(right), "joinKey")
```
to give the query planner a hint that "right" DataFrame is small and should be broadcasted.

Author: Reynold Xin <rxin@databricks.com>

Closes #6751 from rxin/broadcastjoin-hint and squashes the following commits:

953eec2 [Reynold Xin] Code review feedback.
88752d8 [Reynold Xin] Fixed import.
8187b88 [Reynold Xin] [SPARK-8300] DataFrame hint for broadcast join.
parent f0dcbe8a
No related branches found
No related tags found
No related merge requests found
......@@ -130,6 +130,14 @@ case class Join(
}
}
/**
* A hint for the optimizer that we should broadcast the `child` if used in a join operator.
*/
case class BroadcastHint(child: LogicalPlan) extends UnaryNode {
override def output: Seq[Attribute] = child.output
}
case class Except(left: LogicalPlan, right: LogicalPlan) extends BinaryNode {
override def output: Seq[Attribute] = left.output
}
......
......@@ -20,7 +20,7 @@ package org.apache.spark.sql.execution
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.planning._
import org.apache.spark.sql.catalyst.plans._
import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan
import org.apache.spark.sql.catalyst.plans.logical.{BroadcastHint, LogicalPlan}
import org.apache.spark.sql.catalyst.plans.physical._
import org.apache.spark.sql.columnar.{InMemoryColumnarTableScan, InMemoryRelation}
import org.apache.spark.sql.execution.{DescribeCommand => RunnableDescribeCommand}
......@@ -52,6 +52,18 @@ private[sql] abstract class SparkStrategies extends QueryPlanner[SparkPlan] {
}
}
/**
* Matches a plan whose output should be small enough to be used in broadcast join.
*/
object CanBroadcast {
def unapply(plan: LogicalPlan): Option[LogicalPlan] = plan match {
case BroadcastHint(p) => Some(p)
case p if sqlContext.conf.autoBroadcastJoinThreshold > 0 &&
p.statistics.sizeInBytes <= sqlContext.conf.autoBroadcastJoinThreshold => Some(p)
case _ => None
}
}
/**
* Uses the ExtractEquiJoinKeys pattern to find joins where at least some of the predicates can be
* evaluated by matching hash keys.
......@@ -80,15 +92,11 @@ private[sql] abstract class SparkStrategies extends QueryPlanner[SparkPlan] {
}
def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {
case ExtractEquiJoinKeys(Inner, leftKeys, rightKeys, condition, left, right)
if sqlContext.conf.autoBroadcastJoinThreshold > 0 &&
right.statistics.sizeInBytes <= sqlContext.conf.autoBroadcastJoinThreshold =>
case ExtractEquiJoinKeys(Inner, leftKeys, rightKeys, condition, left, CanBroadcast(right)) =>
makeBroadcastHashJoin(leftKeys, rightKeys, left, right, condition, joins.BuildRight)
case ExtractEquiJoinKeys(Inner, leftKeys, rightKeys, condition, left, right)
if sqlContext.conf.autoBroadcastJoinThreshold > 0 &&
left.statistics.sizeInBytes <= sqlContext.conf.autoBroadcastJoinThreshold =>
makeBroadcastHashJoin(leftKeys, rightKeys, left, right, condition, joins.BuildLeft)
case ExtractEquiJoinKeys(Inner, leftKeys, rightKeys, condition, CanBroadcast(left), right) =>
makeBroadcastHashJoin(leftKeys, rightKeys, left, right, condition, joins.BuildLeft)
// If the sort merge join option is set, we want to use sort merge join prior to hashjoin
// for now let's support inner join first, then add outer join
......@@ -329,6 +337,7 @@ private[sql] abstract class SparkStrategies extends QueryPlanner[SparkPlan] {
case e @ EvaluatePython(udf, child, _) =>
BatchPythonEvaluation(udf, e.output, planLater(child)) :: Nil
case LogicalRDD(output, rdd) => PhysicalRDD(output, rdd) :: Nil
case BroadcastHint(child) => apply(child)
case _ => Nil
}
}
......
......@@ -24,6 +24,7 @@ import org.apache.spark.annotation.Experimental
import org.apache.spark.sql.catalyst.ScalaReflection
import org.apache.spark.sql.catalyst.analysis.{UnresolvedFunction, Star}
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.logical.BroadcastHint
import org.apache.spark.sql.types._
import org.apache.spark.util.Utils
......@@ -565,6 +566,22 @@ object functions {
array((colName +: colNames).map(col) : _*)
}
/**
* Marks a DataFrame as small enough for use in broadcast joins.
*
* The following example marks the right DataFrame for broadcast hash join using `joinKey`.
* {{{
* // left and right are DataFrames
* left.join(broadcast(right), "joinKey")
* }}}
*
* @group normal_funcs
* @since 1.5.0
*/
def broadcast(df: DataFrame): DataFrame = {
DataFrame(df.sqlContext, BroadcastHint(df.logicalPlan))
}
/**
* Returns the first column that is not null.
* {{{
......
......@@ -18,6 +18,7 @@
package org.apache.spark.sql
import org.apache.spark.sql.TestData._
import org.apache.spark.sql.execution.joins.BroadcastHashJoin
import org.apache.spark.sql.functions._
class DataFrameJoinSuite extends QueryTest {
......@@ -93,4 +94,20 @@ class DataFrameJoinSuite extends QueryTest {
left.join(right, left("key") === right("key")),
Row(1, 1, 1, 1) :: Row(2, 1, 2, 2) :: Nil)
}
test("broadcast join hint") {
val df1 = Seq((1, "1"), (2, "2")).toDF("key", "value")
val df2 = Seq((1, "1"), (2, "2")).toDF("key", "value")
// equijoin - should be converted into broadcast join
val plan1 = df1.join(broadcast(df2), "key").queryExecution.executedPlan
assert(plan1.collect { case p: BroadcastHashJoin => p }.size === 1)
// no join key -- should not be a broadcast join
val plan2 = df1.join(broadcast(df2)).queryExecution.executedPlan
assert(plan2.collect { case p: BroadcastHashJoin => p }.size === 0)
// planner should not crash without a join
broadcast(df1).queryExecution.executedPlan
}
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment