Skip to content
Snippets Groups Projects
Commit 6273a711 authored by Jen-Ming Chung's avatar Jen-Ming Chung Committed by gatorsmile
Browse files

[SPARK-21610][SQL] Corrupt records are not handled properly when creating a dataframe from a file

## What changes were proposed in this pull request?
```
echo '{"field": 1}
{"field": 2}
{"field": "3"}' >/tmp/sample.json
```

```scala
import org.apache.spark.sql.types._

val schema = new StructType()
  .add("field", ByteType)
  .add("_corrupt_record", StringType)

val file = "/tmp/sample.json"

val dfFromFile = spark.read.schema(schema).json(file)

scala> dfFromFile.show(false)
+-----+---------------+
|field|_corrupt_record|
+-----+---------------+
|1    |null           |
|2    |null           |
|null |{"field": "3"} |
+-----+---------------+

scala> dfFromFile.filter($"_corrupt_record".isNotNull).count()
res1: Long = 0

scala> dfFromFile.filter($"_corrupt_record".isNull).count()
res2: Long = 3
```
When the `requiredSchema` only contains `_corrupt_record`, the derived `actualSchema` is empty and the `_corrupt_record` are all null for all rows. This PR captures above situation and raise an exception with a reasonable workaround messag so that users can know what happened and how to fix the query.

## How was this patch tested?

Added test case.

Author: Jen-Ming Chung <jenmingisme@gmail.com>

Closes #18865 from jmchung/SPARK-21610.
parent 520d92a1
No related branches found
No related tags found
No related merge requests found
Loading
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment