Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
spark
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
cs525-sp18-g07
spark
Commits
58756b72
Commit
58756b72
authored
11 years ago
by
shivaram
Browse files
Options
Downloads
Plain Diff
Merge pull request #761 from mateiz/kmeans-generator
Add data generator for K-means
parents
3097d75d
52dba892
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
mllib/src/main/scala/spark/mllib/clustering/KMeans.scala
+5
-4
5 additions, 4 deletions
mllib/src/main/scala/spark/mllib/clustering/KMeans.scala
mllib/src/main/scala/spark/mllib/util/KMeansDataGenerator.scala
+80
-0
80 additions, 0 deletions
...src/main/scala/spark/mllib/util/KMeansDataGenerator.scala
with
85 additions
and
4 deletions
mllib/src/main/scala/spark/mllib/clustering/KMeans.scala
+
5
−
4
View file @
58756b72
...
...
@@ -315,14 +315,15 @@ object KMeans {
}
def
main
(
args
:
Array
[
String
])
{
if
(
args
.
length
!=
4
)
{
println
(
"Usage: KMeans <master> <input_file> <k> <max_iterations>"
)
if
(
args
.
length
<
4
)
{
println
(
"Usage: KMeans <master> <input_file> <k> <max_iterations>
[<runs>]
"
)
System
.
exit
(
1
)
}
val
(
master
,
inputFile
,
k
,
iters
)
=
(
args
(
0
),
args
(
1
),
args
(
2
).
toInt
,
args
(
3
).
toInt
)
val
runs
=
if
(
args
.
length
>=
5
)
args
(
4
).
toInt
else
1
val
sc
=
new
SparkContext
(
master
,
"KMeans"
)
val
data
=
sc
.
textFile
(
inputFile
).
map
(
line
=>
line
.
split
(
' '
).
map
(
_
.
toDouble
))
val
model
=
KMeans
.
train
(
data
,
k
,
iters
)
val
data
=
sc
.
textFile
(
inputFile
).
map
(
line
=>
line
.
split
(
' '
).
map
(
_
.
toDouble
))
.
cache
()
val
model
=
KMeans
.
train
(
data
,
k
,
iters
,
runs
)
val
cost
=
model
.
computeCost
(
data
)
println
(
"Cluster centers:"
)
for
(
c
<-
model
.
clusterCenters
)
{
...
...
This diff is collapsed.
Click to expand it.
mllib/src/main/scala/spark/mllib/util/KMeansDataGenerator.scala
0 → 100644
+
80
−
0
View file @
58756b72
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package
spark.mllib.util
import
scala.util.Random
import
spark.
{
RDD
,
SparkContext
}
object
KMeansDataGenerator
{
/**
* Generate an RDD containing test data for KMeans. This function chooses k cluster centers
* from a d-dimensional Gaussian distribution scaled by factor r, then creates a Gaussian
* cluster with scale 1 around each center.
*
* @param sc SparkContext to use for creating the RDD
* @param numPoints Number of points that will be contained in the RDD
* @param k Number of clusters
* @param d Number of dimensions
* @parak r Scaling factor for the distribution of the initial centers
* @param numPartitions Number of partitions of the generated RDD; default 2
*/
def
generateKMeansRDD
(
sc
:
SparkContext
,
numPoints
:
Int
,
k
:
Int
,
d
:
Int
,
r
:
Double
,
numPartitions
:
Int
=
2
)
:
RDD
[
Array
[
Double
]]
=
{
// First, generate some centers
val
rand
=
new
Random
(
42
)
val
centers
=
Array
.
fill
(
k
)(
Array
.
fill
(
d
)(
rand
.
nextGaussian
()
*
r
))
// Then generate points around each center
sc
.
parallelize
(
0
until
numPoints
,
numPartitions
).
map
{
idx
=>
val
center
=
centers
(
idx
%
k
)
val
rand2
=
new
Random
(
42
+
idx
)
Array
.
tabulate
(
d
)(
i
=>
center
(
i
)
+
rand2
.
nextGaussian
())
}
}
def
main
(
args
:
Array
[
String
])
{
if
(
args
.
length
<
6
)
{
println
(
"Usage: KMeansGenerator "
+
"<master> <output_dir> <num_points> <k> <d> <r> [<num_partitions>]"
)
System
.
exit
(
1
)
}
val
sparkMaster
=
args
(
0
)
val
outputPath
=
args
(
1
)
val
numPoints
=
args
(
2
).
toInt
val
k
=
args
(
3
).
toInt
val
d
=
args
(
4
).
toInt
val
r
=
args
(
5
).
toDouble
val
parts
=
if
(
args
.
length
>=
7
)
args
(
6
).
toInt
else
2
val
sc
=
new
SparkContext
(
sparkMaster
,
"KMeansDataGenerator"
)
val
data
=
generateKMeansRDD
(
sc
,
numPoints
,
k
,
d
,
r
,
parts
)
data
.
map
(
_
.
mkString
(
" "
)).
saveAsTextFile
(
outputPath
)
System
.
exit
(
0
)
}
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment