Skip to content
Snippets Groups Projects
Commit 520dde48 authored by Reynold Xin's avatar Reynold Xin
Browse files

[SPARK-14451][SQL] Move encoder definition into Aggregator interface

## What changes were proposed in this pull request?
When we first introduced Aggregators, we required the user of Aggregators to (implicitly) specify the encoders. It would actually make more sense to have the encoders be specified by the implementation of Aggregators, since each implementation should have the most state about how to encode its own data type.

Note that this simplifies the Java API because Java users no longer need to explicitly specify encoders for aggregators.

## How was this patch tested?
Updated unit tests.

Author: Reynold Xin <rxin@databricks.com>

Closes #12231 from rxin/SPARK-14451.
parent 2f0b882e
No related branches found
No related tags found
No related merge requests found
......@@ -329,6 +329,11 @@ object MimaExcludes {
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.GroupedDataset"),
ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.sql.Dataset.subtract"),
// [SPARK-14451][SQL] Move encoder definition into Aggregator interface
ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.sql.expressions.Aggregator.toColumn"),
ProblemFilters.exclude[ReversedMissingMethodProblem]("org.apache.spark.sql.expressions.Aggregator.bufferEncoder"),
ProblemFilters.exclude[ReversedMissingMethodProblem]("org.apache.spark.sql.expressions.Aggregator.outputEncoder"),
ProblemFilters.exclude[IncompatibleMethTypeProblem]("org.apache.spark.mllib.evaluation.MultilabelMetrics.this"),
ProblemFilters.exclude[IncompatibleResultTypeProblem]("org.apache.spark.ml.classification.LogisticRegressionSummary.predictions"),
ProblemFilters.exclude[MissingMethodProblem]("org.apache.spark.ml.classification.LogisticRegressionSummary.predictions")
......
......@@ -285,7 +285,7 @@ class ReplSuite extends SparkFunSuite {
val output = runInterpreter("local",
"""
|import org.apache.spark.sql.functions._
|import org.apache.spark.sql.Encoder
|import org.apache.spark.sql.{Encoder, Encoders}
|import org.apache.spark.sql.expressions.Aggregator
|import org.apache.spark.sql.TypedColumn
|val simpleSum = new Aggregator[Int, Int, Int] {
......@@ -293,6 +293,8 @@ class ReplSuite extends SparkFunSuite {
| def reduce(b: Int, a: Int) = b + a // Add an element to the running total
| def merge(b1: Int, b2: Int) = b1 + b2 // Merge intermediate values.
| def finish(b: Int) = b // Return the final result.
| def bufferEncoder: Encoder[Int] = Encoders.scalaInt
| def outputEncoder: Encoder[Int] = Encoders.scalaInt
|}.toColumn
|
|val ds = Seq(1, 2, 3, 4).toDS()
......@@ -339,30 +341,6 @@ class ReplSuite extends SparkFunSuite {
}
}
test("Datasets agg type-inference") {
val output = runInterpreter("local",
"""
|import org.apache.spark.sql.functions._
|import org.apache.spark.sql.Encoder
|import org.apache.spark.sql.expressions.Aggregator
|import org.apache.spark.sql.TypedColumn
|/** An `Aggregator` that adds up any numeric type returned by the given function. */
|class SumOf[I, N : Numeric](f: I => N) extends Aggregator[I, N, N] {
| val numeric = implicitly[Numeric[N]]
| override def zero: N = numeric.zero
| override def reduce(b: N, a: I): N = numeric.plus(b, f(a))
| override def merge(b1: N,b2: N): N = numeric.plus(b1, b2)
| override def finish(reduction: N): N = reduction
|}
|
|def sum[I, N : Numeric : Encoder](f: I => N): TypedColumn[I, N] = new SumOf(f).toColumn
|val ds = Seq((1, 1, 2L), (1, 2, 3L), (1, 3, 4L), (2, 1, 5L)).toDS()
|ds.groupByKey(_._1).agg(sum(_._2), sum(_._3)).collect()
""".stripMargin)
assertDoesNotContain("error:", output)
assertDoesNotContain("Exception", output)
}
test("collecting objects of class defined in repl") {
val output = runInterpreter("local[2]",
"""
......
......@@ -267,7 +267,7 @@ class ReplSuite extends SparkFunSuite {
val output = runInterpreter("local",
"""
|import org.apache.spark.sql.functions._
|import org.apache.spark.sql.Encoder
|import org.apache.spark.sql.{Encoder, Encoders}
|import org.apache.spark.sql.expressions.Aggregator
|import org.apache.spark.sql.TypedColumn
|val simpleSum = new Aggregator[Int, Int, Int] {
......@@ -275,6 +275,8 @@ class ReplSuite extends SparkFunSuite {
| def reduce(b: Int, a: Int) = b + a // Add an element to the running total
| def merge(b1: Int, b2: Int) = b1 + b2 // Merge intermediate values.
| def finish(b: Int) = b // Return the final result.
| def bufferEncoder: Encoder[Int] = Encoders.scalaInt
| def outputEncoder: Encoder[Int] = Encoders.scalaInt
|}.toColumn
|
|val ds = Seq(1, 2, 3, 4).toDS()
......@@ -321,31 +323,6 @@ class ReplSuite extends SparkFunSuite {
}
}
test("Datasets agg type-inference") {
val output = runInterpreter("local",
"""
|import org.apache.spark.sql.functions._
|import org.apache.spark.sql.Encoder
|import org.apache.spark.sql.expressions.Aggregator
|import org.apache.spark.sql.TypedColumn
|/** An `Aggregator` that adds up any numeric type returned by the given function. */
|class SumOf[I, N : Numeric](f: I => N) extends
| org.apache.spark.sql.expressions.Aggregator[I, N, N] {
| val numeric = implicitly[Numeric[N]]
| override def zero: N = numeric.zero
| override def reduce(b: N, a: I): N = numeric.plus(b, f(a))
| override def merge(b1: N,b2: N): N = numeric.plus(b1, b2)
| override def finish(reduction: N): N = reduction
|}
|
|def sum[I, N : Numeric : Encoder](f: I => N): TypedColumn[I, N] = new SumOf(f).toColumn
|val ds = Seq((1, 1, 2L), (1, 2, 3L), (1, 3, 4L), (2, 1, 5L)).toDS()
|ds.groupByKey(_._1).agg(sum(_._2), sum(_._3)).collect()
""".stripMargin)
assertDoesNotContain("error:", output)
assertDoesNotContain("Exception", output)
}
test("collecting objects of class defined in repl") {
val output = runInterpreter("local[2]",
"""
......
......@@ -18,7 +18,7 @@
package org.apache.spark.sql.execution.aggregate
import org.apache.spark.api.java.function.MapFunction
import org.apache.spark.sql.TypedColumn
import org.apache.spark.sql.{Encoder, TypedColumn}
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.expressions.Aggregator
......@@ -27,28 +27,20 @@ import org.apache.spark.sql.expressions.Aggregator
////////////////////////////////////////////////////////////////////////////////////////////////////
class TypedSum[IN, OUT : Numeric](f: IN => OUT) extends Aggregator[IN, OUT, OUT] {
val numeric = implicitly[Numeric[OUT]]
override def zero: OUT = numeric.zero
override def reduce(b: OUT, a: IN): OUT = numeric.plus(b, f(a))
override def merge(b1: OUT, b2: OUT): OUT = numeric.plus(b1, b2)
override def finish(reduction: OUT): OUT = reduction
// TODO(ekl) java api support once this is exposed in scala
}
class TypedSumDouble[IN](f: IN => Double) extends Aggregator[IN, Double, Double] {
override def zero: Double = 0.0
override def reduce(b: Double, a: IN): Double = b + f(a)
override def merge(b1: Double, b2: Double): Double = b1 + b2
override def finish(reduction: Double): Double = reduction
override def bufferEncoder: Encoder[Double] = ExpressionEncoder[Double]()
override def outputEncoder: Encoder[Double] = ExpressionEncoder[Double]()
// Java api support
def this(f: MapFunction[IN, java.lang.Double]) = this(x => f.call(x).asInstanceOf[Double])
def toColumnJava(): TypedColumn[IN, java.lang.Double] = {
toColumn(ExpressionEncoder(), ExpressionEncoder())
.asInstanceOf[TypedColumn[IN, java.lang.Double]]
def toColumnJava: TypedColumn[IN, java.lang.Double] = {
toColumn.asInstanceOf[TypedColumn[IN, java.lang.Double]]
}
}
......@@ -59,11 +51,14 @@ class TypedSumLong[IN](f: IN => Long) extends Aggregator[IN, Long, Long] {
override def merge(b1: Long, b2: Long): Long = b1 + b2
override def finish(reduction: Long): Long = reduction
override def bufferEncoder: Encoder[Long] = ExpressionEncoder[Long]()
override def outputEncoder: Encoder[Long] = ExpressionEncoder[Long]()
// Java api support
def this(f: MapFunction[IN, java.lang.Long]) = this(x => f.call(x).asInstanceOf[Long])
def toColumnJava(): TypedColumn[IN, java.lang.Long] = {
toColumn(ExpressionEncoder(), ExpressionEncoder())
.asInstanceOf[TypedColumn[IN, java.lang.Long]]
def toColumnJava: TypedColumn[IN, java.lang.Long] = {
toColumn.asInstanceOf[TypedColumn[IN, java.lang.Long]]
}
}
......@@ -76,11 +71,13 @@ class TypedCount[IN](f: IN => Any) extends Aggregator[IN, Long, Long] {
override def merge(b1: Long, b2: Long): Long = b1 + b2
override def finish(reduction: Long): Long = reduction
override def bufferEncoder: Encoder[Long] = ExpressionEncoder[Long]()
override def outputEncoder: Encoder[Long] = ExpressionEncoder[Long]()
// Java api support
def this(f: MapFunction[IN, Object]) = this(x => f.call(x))
def toColumnJava(): TypedColumn[IN, java.lang.Long] = {
toColumn(ExpressionEncoder(), ExpressionEncoder())
.asInstanceOf[TypedColumn[IN, java.lang.Long]]
def toColumnJava: TypedColumn[IN, java.lang.Long] = {
toColumn.asInstanceOf[TypedColumn[IN, java.lang.Long]]
}
}
......@@ -93,10 +90,12 @@ class TypedAverage[IN](f: IN => Double) extends Aggregator[IN, (Double, Long), D
(b1._1 + b2._1, b1._2 + b2._2)
}
override def bufferEncoder: Encoder[(Double, Long)] = ExpressionEncoder[(Double, Long)]()
override def outputEncoder: Encoder[Double] = ExpressionEncoder[Double]()
// Java api support
def this(f: MapFunction[IN, java.lang.Double]) = this(x => f.call(x).asInstanceOf[Double])
def toColumnJava(): TypedColumn[IN, java.lang.Double] = {
toColumn(ExpressionEncoder(), ExpressionEncoder())
.asInstanceOf[TypedColumn[IN, java.lang.Double]]
def toColumnJava: TypedColumn[IN, java.lang.Double] = {
toColumn.asInstanceOf[TypedColumn[IN, java.lang.Double]]
}
}
......@@ -43,52 +43,65 @@ import org.apache.spark.sql.execution.aggregate.TypedAggregateExpression
*
* Based loosely on Aggregator from Algebird: https://github.com/twitter/algebird
*
* @tparam I The input type for the aggregation.
* @tparam B The type of the intermediate value of the reduction.
* @tparam O The type of the final output result.
* @tparam IN The input type for the aggregation.
* @tparam BUF The type of the intermediate value of the reduction.
* @tparam OUT The type of the final output result.
* @since 1.6.0
*/
abstract class Aggregator[-I, B, O] extends Serializable {
abstract class Aggregator[-IN, BUF, OUT] extends Serializable {
/**
* A zero value for this aggregation. Should satisfy the property that any b + zero = b.
* @since 1.6.0
*/
def zero: B
def zero: BUF
/**
* Combine two values to produce a new value. For performance, the function may modify `b` and
* return it instead of constructing new object for b.
* @since 1.6.0
*/
def reduce(b: B, a: I): B
def reduce(b: BUF, a: IN): BUF
/**
* Merge two intermediate values.
* @since 1.6.0
*/
def merge(b1: B, b2: B): B
def merge(b1: BUF, b2: BUF): BUF
/**
* Transform the output of the reduction.
* @since 1.6.0
*/
def finish(reduction: B): O
def finish(reduction: BUF): OUT
/**
* Returns this `Aggregator` as a [[TypedColumn]] that can be used in [[Dataset]] or [[DataFrame]]
* Specifies the [[Encoder]] for the intermediate value type.
* @since 2.0.0
*/
def bufferEncoder: Encoder[BUF]
/**
* Specifies the [[Encoder]] for the final ouput value type.
* @since 2.0.0
*/
def outputEncoder: Encoder[OUT]
/**
* Returns this `Aggregator` as a [[TypedColumn]] that can be used in [[Dataset]].
* operations.
* @since 1.6.0
*/
def toColumn(
implicit bEncoder: Encoder[B],
cEncoder: Encoder[O]): TypedColumn[I, O] = {
def toColumn: TypedColumn[IN, OUT] = {
implicit val bEncoder = bufferEncoder
implicit val cEncoder = outputEncoder
val expr =
AggregateExpression(
TypedAggregateExpression(this),
Complete,
isDistinct = false)
new TypedColumn[I, O](expr, encoderFor[O])
new TypedColumn[IN, OUT](expr, encoderFor[OUT])
}
}
......@@ -26,6 +26,7 @@ import org.junit.Test;
import org.apache.spark.api.java.function.MapFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Encoder;
import org.apache.spark.sql.Encoders;
import org.apache.spark.sql.KeyValueGroupedDataset;
import org.apache.spark.sql.expressions.Aggregator;
......@@ -39,12 +40,10 @@ public class JavaDatasetAggregatorSuite extends JavaDatasetAggregatorSuiteBase {
public void testTypedAggregationAnonClass() {
KeyValueGroupedDataset<String, Tuple2<String, Integer>> grouped = generateGroupedDataset();
Dataset<Tuple2<String, Integer>> agged =
grouped.agg(new IntSumOf().toColumn(Encoders.INT(), Encoders.INT()));
Dataset<Tuple2<String, Integer>> agged = grouped.agg(new IntSumOf().toColumn());
Assert.assertEquals(Arrays.asList(tuple2("a", 3), tuple2("b", 3)), agged.collectAsList());
Dataset<Tuple2<String, Integer>> agged2 = grouped.agg(
new IntSumOf().toColumn(Encoders.INT(), Encoders.INT()))
Dataset<Tuple2<String, Integer>> agged2 = grouped.agg(new IntSumOf().toColumn())
.as(Encoders.tuple(Encoders.STRING(), Encoders.INT()));
Assert.assertEquals(
Arrays.asList(
......@@ -73,6 +72,16 @@ public class JavaDatasetAggregatorSuite extends JavaDatasetAggregatorSuiteBase {
public Integer finish(Integer reduction) {
return reduction;
}
@Override
public Encoder<Integer> bufferEncoder() {
return Encoders.INT();
}
@Override
public Encoder<Integer> outputEncoder() {
return Encoders.INT();
}
}
@Test
......
......@@ -19,6 +19,7 @@ package org.apache.spark.sql
import scala.language.postfixOps
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.expressions.Aggregator
import org.apache.spark.sql.expressions.scala.typed
import org.apache.spark.sql.functions._
......@@ -26,74 +27,65 @@ import org.apache.spark.sql.test.SharedSQLContext
object ComplexResultAgg extends Aggregator[(String, Int), (Long, Long), (Long, Long)] {
override def zero: (Long, Long) = (0, 0)
override def reduce(countAndSum: (Long, Long), input: (String, Int)): (Long, Long) = {
(countAndSum._1 + 1, countAndSum._2 + input._2)
}
override def merge(b1: (Long, Long), b2: (Long, Long)): (Long, Long) = {
(b1._1 + b2._1, b1._2 + b2._2)
}
override def finish(reduction: (Long, Long)): (Long, Long) = reduction
override def bufferEncoder: Encoder[(Long, Long)] = Encoders.product[(Long, Long)]
override def outputEncoder: Encoder[(Long, Long)] = Encoders.product[(Long, Long)]
}
case class AggData(a: Int, b: String)
object ClassInputAgg extends Aggregator[AggData, Int, Int] {
/** A zero value for this aggregation. Should satisfy the property that any b + zero = b */
override def zero: Int = 0
/**
* Combine two values to produce a new value. For performance, the function may modify `b` and
* return it instead of constructing new object for b.
*/
override def reduce(b: Int, a: AggData): Int = b + a.a
/**
* Transform the output of the reduction.
*/
override def finish(reduction: Int): Int = reduction
/**
* Merge two intermediate values
*/
override def merge(b1: Int, b2: Int): Int = b1 + b2
override def bufferEncoder: Encoder[Int] = Encoders.scalaInt
override def outputEncoder: Encoder[Int] = Encoders.scalaInt
}
object ComplexBufferAgg extends Aggregator[AggData, (Int, AggData), Int] {
/** A zero value for this aggregation. Should satisfy the property that any b + zero = b */
override def zero: (Int, AggData) = 0 -> AggData(0, "0")
/**
* Combine two values to produce a new value. For performance, the function may modify `b` and
* return it instead of constructing new object for b.
*/
override def reduce(b: (Int, AggData), a: AggData): (Int, AggData) = (b._1 + 1, a)
/**
* Transform the output of the reduction.
*/
override def finish(reduction: (Int, AggData)): Int = reduction._1
/**
* Merge two intermediate values
*/
override def merge(b1: (Int, AggData), b2: (Int, AggData)): (Int, AggData) =
(b1._1 + b2._1, b1._2)
override def bufferEncoder: Encoder[(Int, AggData)] = Encoders.product[(Int, AggData)]
override def outputEncoder: Encoder[Int] = Encoders.scalaInt
}
object NameAgg extends Aggregator[AggData, String, String] {
def zero: String = ""
def reduce(b: String, a: AggData): String = a.b + b
def merge(b1: String, b2: String): String = b1 + b2
def finish(r: String): String = r
override def bufferEncoder: Encoder[String] = Encoders.STRING
override def outputEncoder: Encoder[String] = Encoders.STRING
}
class ParameterizedTypeSum[IN, OUT : Numeric : Encoder](f: IN => OUT)
extends Aggregator[IN, OUT, OUT] {
private val numeric = implicitly[Numeric[OUT]]
override def zero: OUT = numeric.zero
override def reduce(b: OUT, a: IN): OUT = numeric.plus(b, f(a))
override def merge(b1: OUT, b2: OUT): OUT = numeric.plus(b1, b2)
override def finish(reduction: OUT): OUT = reduction
override def bufferEncoder: Encoder[OUT] = implicitly[Encoder[OUT]]
override def outputEncoder: Encoder[OUT] = implicitly[Encoder[OUT]]
}
class DatasetAggregatorSuite extends QueryTest with SharedSQLContext {
import testImplicits._
......@@ -187,6 +179,19 @@ class DatasetAggregatorSuite extends QueryTest with SharedSQLContext {
("a", 2.0, 2L, 4.0, 4L), ("b", 3.0, 1L, 3.0, 3L))
}
test("generic typed sum") {
val ds = Seq("a" -> 1, "a" -> 3, "b" -> 3).toDS()
checkDataset(
ds.groupByKey(_._1)
.agg(new ParameterizedTypeSum[(String, Int), Double](_._2.toDouble).toColumn),
("a", 4.0), ("b", 3.0))
checkDataset(
ds.groupByKey(_._1)
.agg(new ParameterizedTypeSum((x: (String, Int)) => x._2.toInt).toColumn),
("a", 4), ("b", 3))
}
test("SPARK-12555 - result should not be corrupted after input columns are reordered") {
val ds = sql("SELECT 'Some String' AS b, 1279869254 AS a").as[AggData]
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment