Skip to content
Snippets Groups Projects
Commit 4a39b5a1 authored by Yanbo Liang's avatar Yanbo Liang Committed by Xiangrui Meng
Browse files

[SPARK-11958][SPARK-11957][ML][DOC] SQLTransformer user guide and example code

Add ```SQLTransformer``` user guide, example code and make Scala API doc more clear.

Author: Yanbo Liang <ybliang8@gmail.com>

Closes #10006 from yanboliang/spark-11958.
parent 7d05a624
No related branches found
No related tags found
No related merge requests found
...@@ -756,6 +756,65 @@ for more details on the API. ...@@ -756,6 +756,65 @@ for more details on the API.
</div> </div>
</div> </div>
## SQLTransformer
`SQLTransformer` implements the transformations which are defined by SQL statement.
Currently we only support SQL syntax like `"SELECT ... FROM __THIS__ ..."`
where `"__THIS__"` represents the underlying table of the input dataset.
The select clause specifies the fields, constants, and expressions to display in
the output, it can be any select clause that Spark SQL supports. Users can also
use Spark SQL built-in function and UDFs to operate on these selected columns.
For example, `SQLTransformer` supports statements like:
* `SELECT a, a + b AS a_b FROM __THIS__`
* `SELECT a, SQRT(b) AS b_sqrt FROM __THIS__ where a > 5`
* `SELECT a, b, SUM(c) AS c_sum FROM __THIS__ GROUP BY a, b`
**Examples**
Assume that we have the following DataFrame with columns `id`, `v1` and `v2`:
~~~~
id | v1 | v2
----|-----|-----
0 | 1.0 | 3.0
2 | 2.0 | 5.0
~~~~
This is the output of the `SQLTransformer` with statement `"SELECT *, (v1 + v2) AS v3, (v1 * v2) AS v4 FROM __THIS__"`:
~~~~
id | v1 | v2 | v3 | v4
----|-----|-----|-----|-----
0 | 1.0 | 3.0 | 4.0 | 3.0
2 | 2.0 | 5.0 | 7.0 |10.0
~~~~
<div class="codetabs">
<div data-lang="scala" markdown="1">
Refer to the [SQLTransformer Scala docs](api/scala/index.html#org.apache.spark.ml.feature.SQLTransformer)
for more details on the API.
{% include_example scala/org/apache/spark/examples/ml/SQLTransformerExample.scala %}
</div>
<div data-lang="java" markdown="1">
Refer to the [SQLTransformer Java docs](api/java/org/apache/spark/ml/feature/SQLTransformer.html)
for more details on the API.
{% include_example java/org/apache/spark/examples/ml/JavaSQLTransformerExample.java %}
</div>
<div data-lang="python" markdown="1">
Refer to the [SQLTransformer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.SQLTransformer) for more details on the API.
{% include_example python/ml/sql_transformer.py %}
</div>
</div>
## VectorAssembler ## VectorAssembler
`VectorAssembler` is a transformer that combines a given list of columns into a single vector `VectorAssembler` is a transformer that combines a given list of columns into a single vector
......
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.ml;
// $example on$
import java.util.Arrays;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.ml.feature.SQLTransformer;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.*;
// $example off$
public class JavaSQLTransformerExample {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("JavaSQLTransformerExample");
JavaSparkContext jsc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(jsc);
// $example on$
JavaRDD<Row> jrdd = jsc.parallelize(Arrays.asList(
RowFactory.create(0, 1.0, 3.0),
RowFactory.create(2, 2.0, 5.0)
));
StructType schema = new StructType(new StructField [] {
new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("v1", DataTypes.DoubleType, false, Metadata.empty()),
new StructField("v2", DataTypes.DoubleType, false, Metadata.empty())
});
DataFrame df = sqlContext.createDataFrame(jrdd, schema);
SQLTransformer sqlTrans = new SQLTransformer().setStatement(
"SELECT *, (v1 + v2) AS v3, (v1 * v2) AS v4 FROM __THIS__");
sqlTrans.transform(df).show();
// $example off$
}
}
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from __future__ import print_function
from pyspark import SparkContext
# $example on$
from pyspark.ml.feature import SQLTransformer
# $example off$
from pyspark.sql import SQLContext
if __name__ == "__main__":
sc = SparkContext(appName="SQLTransformerExample")
sqlContext = SQLContext(sc)
# $example on$
df = sqlContext.createDataFrame([
(0, 1.0, 3.0),
(2, 2.0, 5.0)
], ["id", "v1", "v2"])
sqlTrans = SQLTransformer(
statement="SELECT *, (v1 + v2) AS v3, (v1 * v2) AS v4 FROM __THIS__")
sqlTrans.transform(df).show()
# $example off$
sc.stop()
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.ml
// $example on$
import org.apache.spark.ml.feature.SQLTransformer
// $example off$
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}
object SQLTransformerExample {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("SQLTransformerExample")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
// $example on$
val df = sqlContext.createDataFrame(
Seq((0, 1.0, 3.0), (2, 2.0, 5.0))).toDF("id", "v1", "v2")
val sqlTrans = new SQLTransformer().setStatement(
"SELECT *, (v1 + v2) AS v3, (v1 * v2) AS v4 FROM __THIS__")
sqlTrans.transform(df).show()
// $example off$
}
}
// scalastyle:on println
...@@ -27,9 +27,16 @@ import org.apache.spark.sql.types.StructType ...@@ -27,9 +27,16 @@ import org.apache.spark.sql.types.StructType
/** /**
* :: Experimental :: * :: Experimental ::
* Implements the transforms which are defined by SQL statement. * Implements the transformations which are defined by SQL statement.
* Currently we only support SQL syntax like 'SELECT ... FROM __THIS__' * Currently we only support SQL syntax like 'SELECT ... FROM __THIS__ ...'
* where '__THIS__' represents the underlying table of the input dataset. * where '__THIS__' represents the underlying table of the input dataset.
* The select clause specifies the fields, constants, and expressions to display in
* the output, it can be any select clause that Spark SQL supports. Users can also
* use Spark SQL built-in function and UDFs to operate on these selected columns.
* For example, [[SQLTransformer]] supports statements like:
* - SELECT a, a + b AS a_b FROM __THIS__
* - SELECT a, SQRT(b) AS b_sqrt FROM __THIS__ where a > 5
* - SELECT a, b, SUM(c) AS c_sum FROM __THIS__ GROUP BY a, b
*/ */
@Experimental @Experimental
@Since("1.6.0") @Since("1.6.0")
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment