Skip to content
Snippets Groups Projects
Commit 3c8478e1 authored by Matei Zaharia's avatar Matei Zaharia
Browse files

Merge pull request #747 from mateiz/improved-lr

Update the Python logistic regression example
parents 6b043a6f 5ac54839
No related branches found
No related tags found
No related merge requests found
......@@ -16,7 +16,8 @@
#
"""
This example requires numpy (http://www.numpy.org/)
A logistic regression implementation that uses NumPy (http://www.numpy.org) to act on batches
of input data using efficient matrix operations.
"""
from collections import namedtuple
from math import exp
......@@ -27,47 +28,45 @@ import numpy as np
from pyspark import SparkContext
N = 100000 # Number of data points
D = 10 # Number of dimensions
R = 0.7 # Scaling factor
ITERATIONS = 5
np.random.seed(42)
DataPoint = namedtuple("DataPoint", ['x', 'y'])
from logistic_regression import DataPoint # So that DataPoint is properly serialized
def generateData():
def generatePoint(i):
y = -1 if i % 2 == 0 else 1
x = np.random.normal(size=D) + (y * R)
return DataPoint(x, y)
return [generatePoint(i) for i in range(N)]
# Read a batch of points from the input file into a NumPy matrix object. We operate on batches to
# make further computations faster.
# The data file contains lines of the form <label> <x1> <x2> ... <xD>. We load each block of these
# into a NumPy array of size numLines * (D + 1) and pull out column 0 vs the others in gradient().
def readPointBatch(iterator):
strs = list(iterator)
matrix = np.zeros((len(strs), D + 1))
for i in xrange(len(strs)):
matrix[i] = np.fromstring(strs[i].replace(',', ' '), dtype=np.float32, sep=' ')
return [matrix]
if __name__ == "__main__":
if len(sys.argv) == 1:
print >> sys.stderr, "Usage: logistic_regression <master> [<slices>]"
if len(sys.argv) != 4:
print >> sys.stderr, "Usage: logistic_regression <master> <file> <iters>"
exit(-1)
sc = SparkContext(sys.argv[1], "PythonLR", pyFiles=[realpath(__file__)])
slices = int(sys.argv[2]) if len(sys.argv) > 2 else 2
points = sc.parallelize(generateData(), slices).cache()
points = sc.textFile(sys.argv[2]).mapPartitions(readPointBatch).cache()
iterations = int(sys.argv[3])
# Initialize w to a random value
w = 2 * np.random.ranf(size=D) - 1
print "Initial w: " + str(w)
# Compute logistic regression gradient for a matrix of data points
def gradient(matrix, w):
Y = matrix[:,0] # point labels (first column of input file)
X = matrix[:,1:] # point coordinates
# For each point (x, y), compute gradient function, then sum these up
return ((1.0 / (1.0 + np.exp(-Y * X.dot(w))) - 1.0) * Y * X.T).sum(1)
def add(x, y):
x += y
return x
for i in range(1, ITERATIONS + 1):
print "On iteration %i" % i
gradient = points.map(lambda p:
(1.0 / (1.0 + exp(-p.y * np.dot(w, p.x)))) * p.y * p.x
).reduce(add)
w -= gradient
for i in range(iterations):
print "On iteration %i" % (i + 1)
w -= points.map(lambda m: gradient(m, w)).reduce(add)
print "Final w: " + str(w)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment