Skip to content
Snippets Groups Projects
Commit 30f6b85c authored by tianyi's avatar tianyi Committed by Michael Armbrust
Browse files

[SPARK-4483][SQL]Optimization about reduce memory costs during the HashOuterJoin

In `HashOuterJoin.scala`, spark read data from both side of join operation before zip them together. It is a waste for memory. We are trying to read data from only one side, put them into a hashmap, and then generate the `JoinedRow` with data from other side one by one.
Currently, we could only do this optimization for `left outer join` and `right outer join`. For `full outer join`, we will do something in another issue.

for
table test_csv contains 1 million records
table dim_csv contains 10 thousand records

SQL:
`select * from test_csv a left outer join dim_csv b on a.key = b.key`

the result is:
master:
```
CSV: 12671 ms
CSV: 9021 ms
CSV: 9200 ms
Current Mem Usage:787788984
```
after patch:
```
CSV: 10382 ms
CSV: 7543 ms
CSV: 7469 ms
Current Mem Usage:208145728
```

Author: tianyi <tianyi@asiainfo-linkage.com>
Author: tianyi <tianyi.asiainfo@gmail.com>

Closes #3375 from tianyi/SPARK-4483 and squashes the following commits:

72a8aec [tianyi] avoid having mutable state stored inside of the task
99c5c97 [tianyi] performance optimization
d2f94d7 [tianyi] fix bug: missing output when the join-key is null.
2be45d1 [tianyi] fix spell bug
1f2c6f1 [tianyi] remove commented codes
a676de6 [tianyi] optimize some codes
9e7d5b5 [tianyi] remove commented old codes
838707d [tianyi] Optimization about reduce memory costs during the HashOuterJoin
parent ea1315e3
No related branches found
No related tags found
No related merge requests found
......@@ -68,66 +68,56 @@ case class HashOuterJoin(
@transient private[this] lazy val DUMMY_LIST = Seq[Row](null)
@transient private[this] lazy val EMPTY_LIST = Seq.empty[Row]
@transient private[this] lazy val leftNullRow = new GenericRow(left.output.length)
@transient private[this] lazy val rightNullRow = new GenericRow(right.output.length)
@transient private[this] lazy val boundCondition =
condition.map(newPredicate(_, left.output ++ right.output)).getOrElse((row: Row) => true)
// TODO we need to rewrite all of the iterators with our own implementation instead of the Scala
// iterator for performance purpose.
private[this] def leftOuterIterator(
key: Row, leftIter: Iterable[Row], rightIter: Iterable[Row]): Iterator[Row] = {
val joinedRow = new JoinedRow()
val rightNullRow = new GenericRow(right.output.length)
val boundCondition =
condition.map(newPredicate(_, left.output ++ right.output)).getOrElse((row: Row) => true)
leftIter.iterator.flatMap { l =>
joinedRow.withLeft(l)
var matched = false
(if (!key.anyNull) rightIter.collect { case r if (boundCondition(joinedRow.withRight(r))) =>
matched = true
joinedRow.copy
key: Row, joinedRow: JoinedRow, rightIter: Iterable[Row]): Iterator[Row] = {
val ret: Iterable[Row] = (
if (!key.anyNull) {
val temp = rightIter.collect {
case r if (boundCondition(joinedRow.withRight(r))) => joinedRow.copy
}
if (temp.size == 0) {
joinedRow.withRight(rightNullRow).copy :: Nil
} else {
temp
}
} else {
Nil
}) ++ DUMMY_LIST.filter(_ => !matched).map( _ => {
// DUMMY_LIST.filter(_ => !matched) is a tricky way to add additional row,
// as we don't know whether we need to append it until finish iterating all of the
// records in right side.
// If we didn't get any proper row, then append a single row with empty right
joinedRow.withRight(rightNullRow).copy
})
}
joinedRow.withRight(rightNullRow).copy :: Nil
}
)
ret.iterator
}
private[this] def rightOuterIterator(
key: Row, leftIter: Iterable[Row], rightIter: Iterable[Row]): Iterator[Row] = {
val joinedRow = new JoinedRow()
val leftNullRow = new GenericRow(left.output.length)
val boundCondition =
condition.map(newPredicate(_, left.output ++ right.output)).getOrElse((row: Row) => true)
rightIter.iterator.flatMap { r =>
joinedRow.withRight(r)
var matched = false
(if (!key.anyNull) leftIter.collect { case l if (boundCondition(joinedRow.withLeft(l))) =>
matched = true
joinedRow.copy
key: Row, leftIter: Iterable[Row], joinedRow: JoinedRow): Iterator[Row] = {
val ret: Iterable[Row] = (
if (!key.anyNull) {
val temp = leftIter.collect {
case l if (boundCondition(joinedRow.withLeft(l))) => joinedRow.copy
}
if (temp.size == 0) {
joinedRow.withLeft(leftNullRow).copy :: Nil
} else {
temp
}
} else {
Nil
}) ++ DUMMY_LIST.filter(_ => !matched).map( _ => {
// DUMMY_LIST.filter(_ => !matched) is a tricky way to add additional row,
// as we don't know whether we need to append it until finish iterating all of the
// records in left side.
// If we didn't get any proper row, then append a single row with empty left.
joinedRow.withLeft(leftNullRow).copy
})
}
joinedRow.withLeft(leftNullRow).copy :: Nil
}
)
ret.iterator
}
private[this] def fullOuterIterator(
key: Row, leftIter: Iterable[Row], rightIter: Iterable[Row]): Iterator[Row] = {
val joinedRow = new JoinedRow()
val leftNullRow = new GenericRow(left.output.length)
val rightNullRow = new GenericRow(right.output.length)
val boundCondition =
condition.map(newPredicate(_, left.output ++ right.output)).getOrElse((row: Row) => true)
key: Row, leftIter: Iterable[Row], rightIter: Iterable[Row],
joinedRow: JoinedRow): Iterator[Row] = {
if (!key.anyNull) {
// Store the positions of records in right, if one of its associated row satisfy
......@@ -193,27 +183,37 @@ case class HashOuterJoin(
}
override def execute() = {
val joinedRow = new JoinedRow()
left.execute().zipPartitions(right.execute()) { (leftIter, rightIter) =>
// TODO this probably can be replaced by external sort (sort merged join?)
// Build HashMap for current partition in left relation
val leftHashTable = buildHashTable(leftIter, newProjection(leftKeys, left.output))
// Build HashMap for current partition in right relation
val rightHashTable = buildHashTable(rightIter, newProjection(rightKeys, right.output))
val boundCondition =
condition.map(newPredicate(_, left.output ++ right.output)).getOrElse((row: Row) => true)
joinType match {
case LeftOuter => leftHashTable.keysIterator.flatMap { key =>
leftOuterIterator(key, leftHashTable.getOrElse(key, EMPTY_LIST),
rightHashTable.getOrElse(key, EMPTY_LIST))
case LeftOuter => {
val rightHashTable = buildHashTable(rightIter, newProjection(rightKeys, right.output))
val keyGenerator = newProjection(leftKeys, left.output)
leftIter.flatMap( currentRow => {
val rowKey = keyGenerator(currentRow)
joinedRow.withLeft(currentRow)
leftOuterIterator(rowKey, joinedRow, rightHashTable.getOrElse(rowKey, EMPTY_LIST))
})
}
case RightOuter => rightHashTable.keysIterator.flatMap { key =>
rightOuterIterator(key, leftHashTable.getOrElse(key, EMPTY_LIST),
rightHashTable.getOrElse(key, EMPTY_LIST))
case RightOuter => {
val leftHashTable = buildHashTable(leftIter, newProjection(leftKeys, left.output))
val keyGenerator = newProjection(rightKeys, right.output)
rightIter.flatMap ( currentRow => {
val rowKey = keyGenerator(currentRow)
joinedRow.withRight(currentRow)
rightOuterIterator(rowKey, leftHashTable.getOrElse(rowKey, EMPTY_LIST), joinedRow)
})
}
case FullOuter => (leftHashTable.keySet ++ rightHashTable.keySet).iterator.flatMap { key =>
fullOuterIterator(key,
leftHashTable.getOrElse(key, EMPTY_LIST),
rightHashTable.getOrElse(key, EMPTY_LIST))
case FullOuter => {
val leftHashTable = buildHashTable(leftIter, newProjection(leftKeys, left.output))
val rightHashTable = buildHashTable(rightIter, newProjection(rightKeys, right.output))
(leftHashTable.keySet ++ rightHashTable.keySet).iterator.flatMap { key =>
fullOuterIterator(key,
leftHashTable.getOrElse(key, EMPTY_LIST),
rightHashTable.getOrElse(key, EMPTY_LIST), joinedRow)
}
}
case x => throw new Exception(s"HashOuterJoin should not take $x as the JoinType")
}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment