Skip to content
Snippets Groups Projects
Commit 2d477fd3 authored by Matei Zaharia's avatar Matei Zaharia
Browse files

Merge pull request #523 from andyk/master

Fix broken link in Quick Start
parents 00c4d238 cf73fbd3
No related branches found
No related tags found
No related merge requests found
......@@ -189,7 +189,7 @@ public class SimpleJob {
}
{% endhighlight %}
This job simply counts the number of lines containing 'a' and the number containing 'b' in a system log file. Note that like in the Scala example, we initialize a SparkContext, though we use the special `JavaSparkContext` class to get a Java-friendly one. We also create RDDs (represented by `JavaRDD`) and run transformations on them. Finally, we pass functions to Spark by creating classes that extend `spark.api.java.function.Function`. The [Java programming guide]("java-programming-guide") describes these differences in more detail.
This job simply counts the number of lines containing 'a' and the number containing 'b' in a system log file. Note that like in the Scala example, we initialize a SparkContext, though we use the special `JavaSparkContext` class to get a Java-friendly one. We also create RDDs (represented by `JavaRDD`) and run transformations on them. Finally, we pass functions to Spark by creating classes that extend `spark.api.java.function.Function`. The [Java programming guide](java-programming-guide.html) describes these differences in more detail.
To build the job, we also write a Maven `pom.xml` file that lists Spark as a dependency. Note that Spark artifacts are tagged with a Scala version.
......@@ -265,7 +265,7 @@ print "Lines with a: %i, lines with b: %i" % (numAs, numBs)
This job simply counts the number of lines containing 'a' and the number containing 'b' in a system log file.
Like in the Scala and Java examples, we use a SparkContext to create RDDs.
We can pass Python functions to Spark, which are automatically serialized along with any variables that they reference.
For jobs that use custom classes or third-party libraries, we can add those code dependencies to SparkContext to ensure that they will be available on remote machines; this is described in more detail in the [Python programming guide](python-programming-guide).
For jobs that use custom classes or third-party libraries, we can add those code dependencies to SparkContext to ensure that they will be available on remote machines; this is described in more detail in the [Python programming guide](python-programming-guide.html).
`SimpleJob` is simple enough that we do not need to specify any code dependencies.
We can run this job using the `pyspark` script:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment